A Survey of Naturally-Occurring Steroid Hormones in Raw Milk and the Associated Health Risks in Tangshan City, Hebei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals and Materials
2.3. Preparation of Samples
2.4. HPLC-MS/MS
2.5. Method Validation
2.6. Exposure Assessment
3. Results and Discussion
3.1. Recovery and LOQ of Steroid Hormones
3.2. Concentrations of Steroids in Raw Milk
3.3. Risk Assessment for the Presence of Cortisol and Progesterone in Milk
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, X.; Liang, F.; Shi, J.; Zhao, X.; Liu, Z.; Wu, L.; Song, Y.; Zhang, H.; Wang, Z. Determination of hormones in milk by hollow fiber-based stirring extraction bar liquid-liquid microextraction gas chromatography mass spectrometry. Anal. Chim. Acta 2013, 790, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shao, B.; Zhang, J.; Wu, Y.; Duan, H. Determination of the residues of 50 anabolic hormones in muscle, milk and liver by very-high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2009, 877, 489–496. [Google Scholar] [CrossRef] [PubMed]
- The European Agency for the the Evaluation of Medicinal Products. Committee for Veterinary Medicinal Products Progesterone Summary Report; EMEA: London, UK, 1999. [Google Scholar]
- Yan, L.; Robinson, R.; Shi, Z.; Mann, G. Efficacy of progesterone supplementation during early pregnancy in cows: A meta-analysis. Theriogenology 2016, 85, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Jouan, P.-N.; Pouliot, Y.; Gauthier, S.F.; Laforest, J.-P. Hormones in bovine milk and milk products: A survey. Int. Dairy J. 2006, 16, 1408–1414. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuruoka, Y.; Kanda, M.; Hayashi, H.; Hashimoto, T.; Matsushima, Y.; Yoshikawa, S.; Nagano, C.; Okutomi, Y.; Takano, I. Determination and surveillance of hydrocortisone and progesterone in livestock products by liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Ganmaa, D.; Sato, A. The possible role of female sex hormones in milk from pregnant cows in the development of breast, ovarian and corpus uteri cancers. Med. Hypotheses 2005, 65, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N. Hormone therapy and the rise and perhaps fall of US breast cancer incidence rates: Critical reflections. Int. J. Epidemiol. 2008, 37, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Nachman, K.E.; Smith, T.J. Hormone Use in Food Animal Production: Assessing Potential Dietary Exposures and Breast Cancer Risk. Curr. Environ. Health Rep. 2015, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goldman, A.S.; Shapiro, B.; Neumann, F. Role of testosterone and its metabolites in the differentiation of the mammary gland in rats. Endocrinology 1976, 99, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Seegers, J.C.; Aswegen, C.H.V.; Nieuwoudt, B.L.; Joubert, W.S. Morphological effects of the catecholestrogens on cells of the seminiferous tubules of Sprague-Dawley rats. Andrologia 1991, 23, 339. [Google Scholar] [CrossRef] [PubMed]
- Remesar, X.; Tang, V.; Ferrer, E.; Torregrosa, C.; Virgili, J.; Masanés, R.M.; Fernández-López, J.A.; Alemany, M. Estrone in food: A factor influencing the development of obesity? Eur. J. Nutr. 1999, 38, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Kuuranne, T.; Geyer, H.; Schänzer, W. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test. Anal. 2011, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Rezabakhsh, A. Hormones in Dairy Foods and Their Impact on Public Health—A Narrative Review Article. Iran. J. Public Health 2015, 44, 742–758. [Google Scholar] [PubMed]
- Chen, C.; Mi, X.; Yuan, Y.; Chen, G.; Ren, L.; Wang, K.; Zhu, D.; Qian, Y. A preliminary risk assessment of potential exposure to naturally occurring estrogens from Beijing (China) market milk products. Food Chem. Toxicol. 2014, 71, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Dairy Association of China. Chinese Dairy Quality Report; China Agricultural Science and Technology Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Ministry of Agriculture of People’s Republic of China. 235th Announcement Ministry of Agriculture of People’s Republic of China; Ministry of Agriculture of People’s Republic of China: Beijing, China, 2002. (In Chinese)
- Sgorlon, S.; Fanzago, M.; Guiatti, D.; Gabai, G.; Stradaioli, G.; Stefanon, B. Factors affecting milk cortisol in mid lactating dairy cows. BMC Vet. Res. 2015, 11, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Public Health of People’s Republic of China. Determination of Hormone Multiresidues in Foodstuffs of Anmimal Origin –LC-MS/MS Method; GB/T 21981-2008; China Standards Press: Beijing, China, 2008. (In Chinese)
- European Union. Commission Decision of 12 August 2002 Implementing Council Directive 96 23 EC Concerning the Performance of Analytical Methods and the Interpretation of Results; European Union: Brussels, Belgium, 2002. [Google Scholar]
- Environmental Protection Agency. Child-Specific Exposure Factors Handbook; Environmental Protection Agency: Washington, DC, USA, 2002.
- Chinese Society of Nutrition. Chinese Dietary Guidelines; People’s Medical Publishing House: Beijing, China, 2011. (In Chinese) [Google Scholar]
- World Health Organization. Lengthheight-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age Methods and development. In WHO Child Growth Standards WHO; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain vaterinary drug residue in food: Fifty-second report of the Joint FAO/WHO Expert Committee on Food Additives. In WHO Technical Report Series; World Health Organization: Rome, Italy, 1999. [Google Scholar]
- Alexandrova, M.; Macho, L. Glucocorticoids in human, cow and rat milk. Endocrinol. Exp. 1983, 17, 183–189. [Google Scholar] [PubMed]
- Xu, L.; Zhang, Y.; Zhang, Y.; Meng, J.; Sheng, Q. Compositions of cortisone and cortisol in colostrum of Holstein cows. China Dairy Ind. 2009, 37, 18–20. (In Chinese) [Google Scholar]
- Romero, G.; Restrepo, I.; Muelas, R.; Bueso-Ródenas, J.; Roca, A.; Díaz, J. Within-day variation and effect of acute stress on plasma and milk cortisol in lactating goats. J. Dairy Sci. 2015, 98, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, G.; Phipps, A.; Carragher, J.; Matthews, L.; Stelwagen, K. Characterization of milk cortisol concentrations as a measure of short-term stress responses in lactating dairy cows. Anim. Welf. 1998, 7, 77–86. [Google Scholar]
- European Union. On Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; European Union: Brussels, Belgium, 2010. [Google Scholar]
- Codex Alimentarius Commission. Maximum Residue Limits for Veterinary Drugs in Foods; Codex Alimentarius Commission: Washington, DC, USA, 2015. [Google Scholar]
- The Japan Food Chemical Research Foundation. Maximum Residue Limits of Agricultural Chemicals in Food, The Japanese Positive List System; The Japan Food Chemical Research Foundation: Tokyo, Japan, 2011. [Google Scholar]
- Ginther, O.J.; Nuti, L.; Wentworth, B.C.; Tyler, W.J. Progesterone concentration in milk and blood during pregnancy in cows. Proc. Soc. Exp. Biol. Med. 1974, 146, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Regal, P.; Cepeda, A.; Fente, C. Development of an LC-MS/MS method to quantify sex hormones in bovine milk and influence of pregnancy in their levels. Food Addit. Contam. Part A 2012, 29, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Hruska, K.; Vĕzník, Z. Significance of progesterone determination in milk. Endocrinol. Exp. 1983, 17, 207–211. [Google Scholar] [PubMed]
- Daxenberger, A.; Ibarreta, D.; Meyer, H.H. Possible health impact of animal oestrogens in food. Hum. Reprod. Update 2001, 7, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Scherpenisse, P.; Bergwerff, A.A. Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). J. Agric. Food Chem. 2006, 54, 9785–9791. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Public Health of People’s Republic of China. Miximum Levels of Contamination in Foods; Ministry of Public Health of People’s Republic of China: Being, China, 2012. (In Chinese)
Analyte | Parent Ion (m/z) | Daughter Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) | Internal Standard |
---|---|---|---|---|---|
Prednisone | 403.7 | 327.5 a | 18 | 14 | Cortisol-d3 |
357.2 | 9 | ||||
Cortisol | 407.5 | 331.5 a | 25 | 16 | Cortisol-d3 |
361.7 | 13 | ||||
Dexamethasone | 437.4 | 361.5 a | 30 | 16 | Cortisol-d3 |
391.3 | 12 | ||||
Fludrocortisone acetate | 467.4 | 421.2 a | 20 | 12 | Cortisol-d3 |
349 | 24 | ||||
Beclomethasone | 453.3 | 377.3 a | 20 | 15 | Cortisol-d3 |
407.3 | 12 | ||||
Methylprednisolone | 419.7 | 343.6 a | 20 | 19 | Cortisol-d3 |
373.3 | 12 | ||||
Prednisolone | 407.5 | 331.5 a | 25 | 16 | Cortisol-d3 |
361.7 | 13 | ||||
Trenbolone | 271.2 | 253.3 a | 33 | 18 | 17β-boldenone-d3 |
199.3 | 24 | ||||
Boldenone | 287.6 | 121.0 a | 22 | 22 | 17β-boldenone-d3 |
135 | 15 | ||||
Nandrolone | 275.6 | 109.1 a | 35 | 26 | 17β-boldenone-d3 |
257.4 | 15 | ||||
Testosterone | 289.4 | 97.1 a | 38 | 22 | testosterone-3,4-13C2 |
109.1 | 20 | ||||
Methyltestosterone | 303.5 | 109.1 a | 20 | 27 | methyltestosterone-d3 |
97.1 | 25 | ||||
Methandrostenolone | 287.4 | 269.1 a | 16 | 11 | testosterone-3,4-13C2 |
159.1 | 21 | ||||
Stanozolol | 329.5 | 81.1 a | 60 | 42 | 16β-OH-stanozolol-d3 |
91.1 | 40 | ||||
Megestrol acetate | 385.5 | 267.3 a | 30 | 16 | megestrol acetate-d3 |
325.6 | 16 | ||||
Chlormadinone acetate | 405.4 | 345.6 a | 28 | 12 | megestrol acetate-d3 |
309.6 | 16 | ||||
Progesterone | 315.5 | 97 a | 35 | 20 | progesterone-d9 |
297.5 | 35 | ||||
Estriol | 287.3 | 145.3 a | 56 | 44 | estradiol-3,4-13C2 |
171.1 | 47 | ||||
Estradiol | 271.4 | 183.1 a | 45 | 40 | estradiol-3,4-13C2 |
145.2 | 45 | ||||
Estrone | 269.4 | 145.2 a | 49 | 41 | estrone-2,4-d2 |
159.2 | 41 | ||||
Diethylstilbestrol | 267.3 | 251.3 a | 43 | 25 | diethylstilbestrol-d6 |
237.3 | 28 | ||||
Hexestrol | 269.5 | 133.9 a | 30 | 16 | dienestrol-d2 |
119.1 | 40 |
Analyte | LOQ (µg/kg) | % Recovery |
---|---|---|
Prednisone | 0.4 | 73.3–81.2 |
Cortisol | 0.4 | 75.4–85.7 |
Dexamethasone | 0.4 | 72.5–80.3 |
Fludrocortisone acetate | 0.4 | 75.2–88.1 |
Beclomethasone | 0.4 | 75.4–86.8 |
Methylprednisolone | 0.4 | 72.3–80.2 |
Prednisolone | 0.4 | 73.5–86.1 |
Trenbolone | 1.0 | 71.0–80.0 |
Boldenone | 1.0 | 75.2–85.4 |
Nandrolone | 1.0 | 75.4–85.1 |
Methandrostenolone | 1.0 | 74.6–82.4 |
Testosterone | 0.4 | 76.5–84.5 |
Methyltestosterone | 0.4 | 74.1–79.0 |
Stanozolol | 0.4 | 72.1–81.2 |
Megestrol acetate | 1.0 | 75.0–90.2 |
Chlormadinone acetate | 1.0 | 77.5–84.3 |
Progesterone | 0.4 | 78.3–92.5 |
Estriol | 1.0 | 77.2–79.6 |
Estradiol | 1.0 | 73.4–83.1 |
Estrone | 2.0 | 71.2–80.5 |
Diethylstilbestrol | 2.0 | 70.3–80.6 |
Hexestrol | 2.0 | 75.2–82.7 |
Analyte | Positive Samples n (%) | Steroids Content (µg/kg) | ||
---|---|---|---|---|
Maximum | Minimum | Mean ± SD | ||
Prednisone | 0 (0) | - | ||
Cortisol | 24 (12.3) | 0.94 | 0.44 | 0.61 ± 0.13 |
Dexamethasone | 0 (0) | - | ||
Fludrocortisone acetate | 0 (0) | - | ||
Beclomethasone | 0 (0) | - | ||
Methylprednisolone | 0 (0) | - | ||
Prednisolone | 0 (0) | - | ||
Trenbolone | 0 (0) | - | ||
Boldenone | 0 (0) | - | ||
Nandrolone | 0 (0) | - | ||
Methandrostenolone | 0 (0) | - | ||
Testosterone | 0 (0) | - | ||
Methyltestosterone | 0 (0) | - | ||
Stanozolol | 0 (0) | - | ||
Megestrol acetate | 0 (0) | - | ||
Chlormadinone acetate | 0 (0) | - | ||
Progesterone | 165 (84.6) | 9.04 | 2.12 | 5.12 ± 1.41 |
Estriol | 0 (0) | - | ||
Estradiol | 0 (0) | - | ||
Estrone | 0 (0) | - | ||
Diethylstilbestrol | 0 (0) | - | ||
Hexestrol | 0 (0) | - |
Category | Name | Maximum Residue Limit (µg/kg) | |||
---|---|---|---|---|---|
China | EU | CAC | Japan | ||
Glucocorticoids | Betamethasone | 0.3 a | 0.3 a | 0.3 a | |
Dexamethasone | 0.3 a | 0.3 a | 0.3 a | 20 a | |
Cortisol | 10 a | ||||
Prednisolone | 6 a | 0.7 a | |||
Methylprednisolone | 10 a | ||||
Progestogens | Altrenogest | 3 a | |||
Chlormadinone | 2.5 a | 3 a | |||
Norgestomet | 0.1 a | ||||
Megestrol Acetate | N.D. b | ||||
Androgens | Crostebol | 0.5 a | |||
Methyltestosterone | N.D. b | ||||
Testosterone Propionate | N.D. b | ||||
Trenbolone | N.D. b | ||||
Trenbolone Acetate | N.D. b | ||||
Nandrolone Phenylpropionate | N.D. b | ||||
Estrogens | Diethylstilbestrol | N.D. b | N.D. b | ||
Estradiol Benzoate | N.D. b |
Population Group | Mean Concentration in Milk (μg/kg) | Body Weight (kg) [23] | Ingestion Rate (g) [21] | Exposure Level (μg/kg body weight/day) | Contribution to the ADI (%) | |
---|---|---|---|---|---|---|
Gender | Age | |||||
Boys a | 1 | 5.12 | 9.65 | 475 | 0.252 | 0.84 |
2 | 12.15 | 344 | 0.145 | 0.48 | ||
3 | 14.34 | 347 | 0.124 | 0.41 | ||
4 | 16.34 | 328 | 0.103 | 0.34 | ||
5 | 18.34 | 330 | 0.092 | 0.31 | ||
Girls b | 1 | 8.95 | 475 | 0.271 | 0.90 | |
2 | 11.48 | 344 | 0.153 | 0.51 | ||
3 | 13.85 | 347 | 0.128 | 0.43 | ||
4 | 16.07 | 328 | 0.104 | 0.35 | ||
5 | 18.22 | 330 | 0.093 | 0.31 |
Population Group | Maximum Concentration in Milk (μg/kg) | Body Weight (kg) [23] | Quantity Ingested (g) [21] | Exposure Level (μg/kg body weight/day) | Contribution to the ADI (%) | |
---|---|---|---|---|---|---|
Gender | Age | |||||
Boys | 1 | 9.04 | 9.65 | 475 | 0.445 | 1.48 |
2 | 12.15 | 344 | 0.256 | 0.85 | ||
3 | 14.34 | 347 | 0.219 | 0.73 | ||
4 | 16.34 | 328 | 0.181 | 0.60 | ||
5 | 18.34 | 330 | 0.163 | 0.54 | ||
Girls | 1 | 8.95 | 475 | 0.480 | 1.60 | |
2 | 11.48 | 344 | 0.271 | 0.90 | ||
3 | 13.85 | 347 | 0.226 | 0.75 | ||
4 | 16.07 | 328 | 0.184 | 0.61 | ||
5 | 18.22 | 330 | 0.164 | 0.55 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Su, C.; Zheng, N.; Li, S.; Meng, L.; Wang, J. A Survey of Naturally-Occurring Steroid Hormones in Raw Milk and the Associated Health Risks in Tangshan City, Hebei Province, China. Int. J. Environ. Res. Public Health 2018, 15, 38. https://doi.org/10.3390/ijerph15010038
Qu X, Su C, Zheng N, Li S, Meng L, Wang J. A Survey of Naturally-Occurring Steroid Hormones in Raw Milk and the Associated Health Risks in Tangshan City, Hebei Province, China. International Journal of Environmental Research and Public Health. 2018; 15(1):38. https://doi.org/10.3390/ijerph15010038
Chicago/Turabian StyleQu, Xueyin, Chuanyou Su, Nan Zheng, Songli Li, Lu Meng, and Jiaqi Wang. 2018. "A Survey of Naturally-Occurring Steroid Hormones in Raw Milk and the Associated Health Risks in Tangshan City, Hebei Province, China" International Journal of Environmental Research and Public Health 15, no. 1: 38. https://doi.org/10.3390/ijerph15010038
APA StyleQu, X., Su, C., Zheng, N., Li, S., Meng, L., & Wang, J. (2018). A Survey of Naturally-Occurring Steroid Hormones in Raw Milk and the Associated Health Risks in Tangshan City, Hebei Province, China. International Journal of Environmental Research and Public Health, 15(1), 38. https://doi.org/10.3390/ijerph15010038