Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures and Procedure
2.3. Statistical Analysis
2.4. Ethics
3. Results
Risk Factors Predicting IGD
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
AUDIT Test | FTND Test | |||
---|---|---|---|---|
Category | Male | Female | ||
Score | Category | Score | ||
Normal drinker | ≤9 | ≤5 | Low risk | ≤3 |
Mild-to-moderate drinker | 10~19 | 6~9 | Intermediate risk | 4~6 |
Heavy drinker | ≥20 | ≥10 | High risk | ≥7 |
References
- Kuss, D.J. Internet gaming addiction: Current perspectives. Psychol. Res. Behav. Manag. 2013, 6, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Entertainment software association (ESA). 2015 Essential Facts about the Computer and Video Game Industry; ESA: Washington, DC, USA, 2015. [Google Scholar]
- Aarseth, E.; Bean, A.M.; Boonen, H.; Colder Carras, M.; Coulson, M.; Das, D.; Deleuze, J.; Dunkels, E.; Edman, J.; Ferguson, C.J. Scholars’ open debate paper on the world health organization ICD-11 gaming disorder proposal. J. Behav. Addict. 2017, 6, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Kim, H.; Kim, G.-Y.; Jeon, Y.; Park, S.; Lee, J.-Y.; Jung, H.; Sohn, B.; Choi, J.-S.; Kim, D.-J. Similarities and differences among internet gaming disorder, gambling disorder and alcohol use disorder: A focus on impulsivity and compulsivity. J. Behav. Addict. 2014, 3, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Na, E.; Lee, H.; Choi, I.; Kim, D.J. Comorbidity of internet gaming disorder and alcohol use disorder: A focus on clinical characteristics and gaming patterns. Am. J. Addict. 2017, 26, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kwon, M.; Choi, J.-H.; Lee, S.-K.; Choi, J.S.; Choi, S.-W.; Kim, D.-J. Development of the internet addiction scale based on the internet gaming disorder criteria suggested in DSM-5. Addict. Behav. 2014, 39, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Demetrovics, Z.; Urbán, R.; Nagygyörgy, K.; Farkas, J.; Griffiths, M.D.; Pápay, O.; Kökönyei, G.; Felvinczi, K.; Oláh, A. The development of the problematic online gaming questionnaire (POGQ). PLoS ONE 2012, 7, e36417. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; O’brien, C.P. Internet gaming disorder and the DSM-5. Addiction 2013, 108, 1186–1187. [Google Scholar] [CrossRef] [PubMed]
- Männikkö, N.; Billieux, J.; Kääriäinen, M. Problematic digital gaming behavior and its relation to the psychological, social and physical health of finnish adolescents and young adults. J. Behav. Addict. 2015, 4, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunborg, G.S.; Mentzoni, R.A.; Frøyland, L.R. Is video gaming, or video game addiction, associated with depression, academic achievement, heavy episodic drinking, or conduct problems? J. Behav. Addict. 2014, 3, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rooij, A.J.; Kuss, D.J.; Griffiths, M.D.; Shorter, G.W.; Schoenmakers, T.M.; Van de Mheen, D. The (co-) occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents. J. Behav. Addict. 2014, 3, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Han, D.H.; Kim, B.-N.; Cheong, J.H.; Lee, Y.-S. Correlations among social anxiety, self-esteem, impulsivity, and game genre in patients with problematic online game playing. Psychiatry Investig. 2016, 13, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, J.S.; Valkenburg, P.M.; Peter, J. Psychosocial causes and consequences of pathological gaming. Comput. Hum. Behav. 2011, 27, 144–152. [Google Scholar] [CrossRef]
- Liu, M.; Peng, W. Cognitive and psychological predictors of the negative outcomes associated with playing mmogs (massively multiplayer online games). Comput. Hum. Behav. 2009, 25, 1306–1311. [Google Scholar] [CrossRef]
- Caplan, S.E. Relations among loneliness, social anxiety, and problematic internet use. Cyberpsychol. Behav. 2006, 10, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Internet gaming addiction: A systematic review of empirical research. Int. J. Ment. Health Addict. 2012, 10, 278–296. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D. A critical account of DSM-5 criteria for internet gaming disorder. Addict. Res. Theory 2015, 23, 93–98. [Google Scholar] [CrossRef]
- Hyun, G.J.; Han, D.H.; Lee, Y.S.; Kang, K.D.; Yoo, S.K.; Chung, U.-S.; Renshaw, P.F. Risk factors associated with online game addiction: A hierarchical model. Comput. Hum. Behav. 2015, 48, 706–713. [Google Scholar] [CrossRef]
- Rho, M.J.; Jeong, J.-E.; Chun, J.-W.; Cho, H.; Jung, D.J.; Choi, I.Y.; Kim, D.-J. Predictors and patterns of problematic internet game use using a decision tree model. J. Behav. Addict. 2016, 5, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. Chaos and confusion in DSM-5 diagnosis of internet gaming disorder: Issues, concerns, and recommendations for clarity in the field. J. Behav. Addict. 2017, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. DSM-5 diagnosis of internet gaming disorder: Some ways forward in overcoming issues and concerns in the gaming studies field: Response to the commentaries. J. Behav. Addict. 2017, 6, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; Rehbein, F.; Gentile, D.A.; Lemmens, J.S.; Rumpf, H.J.; Mößle, T.; Bischof, G.; Tao, R.; Fung, D.S.; Borges, G. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction 2014, 109, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Agency, N.I.A. Internet Addiction Survey; NIA: Daegu Metropolitan City, South Korea, 2013. [Google Scholar]
- Lee, B.; Lee, C.; Lee, P.; Choi, M.; Namkoong, K. Development of korean version of alcohol use disorders identification test (AUDIT-K): Its reliability and validity. J. Korean Acad. Addict. Psychiatry 2000, 4, 83–92. [Google Scholar]
- Fagerstrom, K.-O.; Schneider, N.G. Measuring nicotine dependence: A review of the fagerstrom tolerance questionnaire. J. Behav. Med. 1989, 12, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Personal. 2004, 72, 271–324. [Google Scholar] [CrossRef]
- Derogatis, L. Manual for the Symptom Checklist 90 Revised (SCL-90-R); The Johns Hopkins University School of Medicine: Baltimore, MD, USA, 1986. [Google Scholar]
- Kim, Y.; Jeong, J.-E.; Cho, H.; Jung, D.-J.; Kwak, M.; Rho, M.J.; Yu, H.; Kim, D.-J.; Choi, I.Y. Personality factors predicting smartphone addiction predisposition: Behavioral inhibition and activation systems, impulsivity, and self-control. PLoS ONE 2016, 11, e0159788. [Google Scholar] [CrossRef] [PubMed]
- Carver, C.S.; White, T.L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. J. Personal. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
- Dickman, S.J. Functional and dysfunctional impulsivity: Personality and cognitive correlates. J. Personal. Soc. Psychol. 1990, 58, 95–102. [Google Scholar] [CrossRef]
- Franke, G. SCL-90-R: Die Symptom-Check-Liste von Derogatis-Deutsche Version; Beltz Test Gesellschaft Google Scholar: Göttingen, Germany, 1995. [Google Scholar]
- Derogatis, L.R.; Cleary, P.A. Factorial invariance across gender for the primary symptom dimensions of the SCL-90. Br. J. Soc. Clin. Psychol. 1977, 16, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.A.; McNaughton, N. The Neuropsychology of Anxiety: An Enquiry into the Function of the Septo-Hippocampal System; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Kaptsis, D.; King, D.L.; Delfabbro, P.H.; Gradisar, M. Withdrawal symptoms in internet gaming disorder: A systematic review. Clin. Psychol. Rev. 2016, 43, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.Y.; Ko, C.H.; Yen, C.F.; Chen, S.H.; Chung, W.L.; Chen, C.C. Psychiatric symptoms in adolescents with internet addiction: Comparison with substance use. Psychiatry Clin. Neurosci. 2008, 62, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, B.; Ortengren, A.; Richards, J.B.; de Wit, H. Dimensions of impulsive behavior: Personality and behavioral measures. Personal. Individ. Differ. 2006, 40, 305–315. [Google Scholar] [CrossRef]
- Baumeister, R.F. Ego depletion and self-regulation failure: A resource model of self-control. Alcohol. Clin. Exp. Res. 2003, 27, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.M.; Cheung, V.I.; Ku, L.; Hung, E.P. Psychological risk factors of addiction to social networking sites among chinese smartphone users. J. Behav. Addict. 2013, 2, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Yau, Y.H.; Chai, J.; Guo, J.; Potenza, M.N. Problematic internet use, well-being, self-esteem and self-control: Data from a high-school survey in china. Addict. Behav. 2016, 61, 74–79. [Google Scholar] [CrossRef] [PubMed]
- LaRose, R.; Lin, C.A.; Eastin, M.S. Unregulated internet usage: Addiction, habit, or deficient self-regulation? Media Psychol. 2003, 5, 225–253. [Google Scholar] [CrossRef]
- Park, J.-A.; Park, M.-H.; Shin, J.-H.; Li, B.; Rolfe, D.T.; Yoo, J.-Y.; Dittmore, S.W. Effect of sports participation on internet addiction mediated by self-control: A case of korean adolescents. Kasetsart J. Soc. Sci. 2016, 37, 164–169. [Google Scholar] [CrossRef]
- Tonioni, F.; D’Alessandris, L.; Lai, C.; Martinelli, D.; Corvino, S.; Vasale, M.; Fanella, F.; Aceto, P.; Bria, P. Internet addiction: Hours spent online, behaviors and psychological symptoms. Gen. Hosp. Psychiatry 2012, 34, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Loton, D.; Borkoles, E.; Lubman, D.; Polman, R. Video game addiction, engagement and symptoms of stress, depression and anxiety: The mediating role of coping. Int. J. Ment. Health Addict. 2016, 14, 565–578. [Google Scholar] [CrossRef]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Science and ICT. (The) 2015 Survey on Internet Overdependence; The Ministry of Science and ICT: Gwacheon-si, Korea, 2016. [Google Scholar]
- Allison, S.E.; von Wahlde, L.; Shockley, T.; Gabbard, G.O. The development of the self in the era of the internet and role-playing fantasy games. Am. J. Psychiatry 2006, 163, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Rau, P.-L.P.; Peng, S.-Y.; Yang, C.-C. Time distortion for expert and novice online game players. Cyberpsychol. Behav. 2006, 9, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.-K.; Wang, C.-C.; Fang, W. Physical interpersonal relationships and social anxiety among online game players. Cyberpsychol. Behav. 2005, 8, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.T.; Griffiths, M.D.; Parke, A. Experiences of time loss among videogame players: An empirical study. Cyberpsychol. Behav. 2007, 10, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.T.; Griffiths, M.D. Time loss whilst playing video games: Is there a relationship to addictive behaviours? Int. J. Mental Health Addict. 2007, 5, 141–149. [Google Scholar] [CrossRef]
- Lee, S.-J.; Rho, M.J.; Yook, I.H.; Park, S.-H.; Jang, K.-S.; Park, B.-J.; Lee, O.; Lee, D.K.; Kim, D.-J.; Choi, I.Y. Design, development and implementation of a smartphone overdependence management system for the self-control of smart devices. Appl. Sci. 2016, 6, 440. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, K.; Lee, H.-W.; Hong, J.-P.; Cho, M.J.; Fava, M.; Mischoulon, D.; Heo, J.-Y.; Jeon, H.J. Internet game addiction, depression, and escape from negative emotions in adulthood: A nationwide community sample of korea. J. Nerv. Ment. Dis. 2017, 205, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Derogatis, L.R.; Lipman, R.S.; Rickels, K.; Uhlenhuth, E.H.; Covi, L. The hopkins symptom checklist (HSCL): A self-report symptom inventory. Syst. Res. Behav. Sci. 1974, 19, 1–15. [Google Scholar] [CrossRef]
Variables | # of Items | |
---|---|---|
Demographic characteristics | Gender, age, job | 3 |
AUDIT-K | 10 | |
FTND | 6 | |
Internet gaming characteristics | Money spent on gaming (/month), Weekday game time (/day), Weekend game time (/day), Game device, Game venue, Offline game club attendance, Game club membership status | 7 |
Psychological factors | DII | 12 |
BSCS | 13 | |
SCL depression | 13 | |
SCL anxiety | 10 | |
BIS | 7 | |
BAS reward responsiveness | 5 | |
BAS drive | 4 | |
BAS fun seeking | 4 |
Variables | Total | IGD Group | Control Group | Chi-Square (p-Value) | |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||
Gender | Mal | 2036 (57.1) | 290 (60.3) | 1746 (56.6) | 2.36 (0.124) |
Female | 1532 (42.9) | 191 (39.7) | 1341 (43.4) | ||
Age | 20–29 years | 1259 (35.3) | 170 (35.3) | 1089 (35.3) | 0.43 (0.808) |
30–39 years | 1559 (43.7) | 215 (44.7) | 1344 (43.5) | ||
40–49 years | 750 (21.0) | 96 (20.0) | 654 (21.2) | ||
Education | High school graduate or less | 1053 (29.5) | 134 (27.9) | 919 (29.8) | 0.76 (0.683) |
College graduate | 2130 (59.7) | 295 (61.3) | 1835 (59.4) | ||
Graduate school | 385 (10.8) | 52 (10.8) | 333 (10.8) | ||
Job | Office worker, et al. 1 | 2418 (67.8) | 334 (69.4) | 2084 (67.5) | 0.86 (0.835) |
Student | 535 (15.0) | 67 (13.9) | 468 (15.2) | ||
etc. | 217 (6.1) | 27 (5.6) | 190 (6.2) | ||
Unemployed/housewife | 398 (11.2) | 53 (11.0) | 345 (11.2) | ||
Marital status | Couple 2 | 1867 (52.3) | 241 (50.1) | 1626 (52.7) | 1.10 (0.294) |
Single 2 | 1701 (47.7) | 240 (49.9) | 1461 (47.3) | ||
Income level | Low | 1567 (43.9) | 219 (45.5) | 1348 (43.7) | 3.52 (0.172) |
Middle | 1557 (43.6) | 193 (40.1) | 1364 (44.2) | ||
High | 444 (12.4) | 69 (14.3) | 375 (12.2) | ||
Total | 3568 (100) | 481 (13.5) | 3087 (86.5) |
Variables | Total | IGD Group | Normal Group | Test Statistics (p-Value) | |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||
Game club membership | No | 2198 (61.6) | 203 (42.2) | 1995 (64.6) | 88.45 (<0.001) |
Yes | 1370 (38.4) | 278 (57.8) | 1092 (35.4) | ||
Game playing | Playing one game intensively | 2098 (58.8) | 302 (62.8) | 1796 (58.2) | 3.65 (0.056) |
Playing various games | 1470 (41.2) | 179 (37.2) | 1291 (41.8) | ||
Game venue | Home | 2748 (77.0) | 366 (76.1) | 2382 (77.2) | 32.85 (<0.001) |
Gaming Internet cafe | 400 (11.2) | 84 (17.5) | 316 (10.2) | ||
Others 1 | 420 (11.8) | 31 (6.4) | 389 (12.6) | ||
Game device | PC | 1424 (39.9) | 255 (53.0) | 1169 (37.9) | 42.39 (<0.001) |
Console | 63 (1.8) | 11 (2.3) | 52 (1.7) | ||
Mobile device 2 | 2080 (58.3) | 215 (44.7) | 1865 (60.4) | ||
Game partner | Alone | 2593 (72.7) | 321 (66.7) | 2272 (73.6) | 14.07 (0.003) |
Family | 169 (4.7) | 20 (4.2) | 149 (4.8) | ||
Friends | 280 (7.9) | 52 (10.8) | 228 (7.4) | ||
Online partner | 526 (14.7) | 88 (18.3) | 438 (14.2) | ||
Self-perceptions of addictiveness | Not at all | 203 (5.7) | 19 (4.0) | 184 (6.0) | 85.69 (<0.001) |
A little | 1077 (30.2) | 90 (18.7) | 987 (32.0) | ||
Much | 1979 (55.5) | 285 (59.3) | 1694 (54.9) | ||
Very much | 309 (8.7) | 87 (18.1) | 222 (7.2) | ||
Offline game club attendance | Not attend | 2469 (69.2) | 205 (42.6) | 2264 (73.3) | 185.63 (<0.001) |
Sometimes | 1032 (28.9) | 256 (53.2) | 776 (25.1) | ||
Very often | 67 (1.9) | 20 (4.2) | 47 (1.5) | ||
Onset of Internet game | Under middle school | 842 (23.6) | 122 (25.4) | 720 (23.3) | 11.42 (0.009) |
Middle or high school | 882 (24.72) | 142 (29.5) | 740 (24.0) | ||
After graduating high school | 1056 (29.6) | 131 (27.2) | 925 (30.0) | ||
30s or 40s | 788 (22.09) | 86 (17.9) | 702 (22.7) | ||
Gaming time/day | Weekdays | 2.09 | 2.85 | 1.97 | 7.21 (<0.001) |
Weekends and holidays | 3.08 | 4.12 | 2.92 | 7.19 (<0.001) | |
Maximum | 4.07 | 5.93 | 3.78 | 6.30 (<0.001) | |
Money spent on gaming/month | $13.76 | $31.36 | $11.02 | 8.23 (<0.001) |
Variables | Estimate (SE) | p-Value | OR 95% CI | ||
---|---|---|---|---|---|
Intercept | −5.452 (0.602) | - | |||
Gender | 0.023 (0.139) | 0.869 | 1.023 (0.779–1.344) | ||
Age | 0.138 | 0.090 | 0.125 | 1.148 (0.962–1.37) | |
Job | Office worker, et al. 1 | −0.167 | 0.193 | 0.387 | 0.846 (0.579–1.236) |
Student | −0.017 | 0.248 | 0.944 | 0.983 (0.604–1.599) | |
etc. | −0.260 | 0.291 | 0.373 | 0.771 (0.436–1.365) | |
AUDIT | Normal drinker | −0.136 | 0.163 | 0.404 | 0.873 (0.634–1.201) |
Mild-to-moderate drinker | −0.313 | 0.166 | 0.059 | 0.731 (0.528–1.012) | |
Heavy drinker | 0.171 | 0.161 | 0.289 | 1.186 (0.865–1.626) | |
FTND | Low | −0.201 | 0.171 | 0.240 | 0.818 (0.585–1.144) |
Intermediate | 0.177 | 0.195 | 0.362 | 1.194 (0.815–1.748) | |
High | 0.358 | 0.307 | 0.243 | 1.431 (0.784–2.611) | |
Money spent on gaming *** | 0.005 | 0.002 | <0.001 *** | 1.005 (1.002–1.008) | |
Weekday game time *** | 0.078 | 0.027 | 0.003 *** | 1.081 (1.026–1.139) | |
Weekend game time | 0.004 | 0.019 | 0.843 | 1.004 (0.968–1.041) | |
Game device | PC | 0.160 | 0.132 | 0.224 | 1.174 (0.907–1.519) |
Console | 0.239 | 0.413 | 0.563 | 1.270 (0.565–2.853) | |
Game venue | Home | 0.324 | 0.217 | 0.135 | 1.383 (0.905–2.114) |
Gaming Internet cafe | 0.282 | 0.270 | 0.296 | 1.326 (0.781–2.25) | |
Offline game club attendance *** | 0.723 | 0.130 | <0.001 *** | 2.060 (1.597–2.658) | |
Game club membership status ** | 0.332 | 0.125 | 0.008 ** | 1.393 (1.09–1.78) | |
DII *** | 0.129 | 0.022 | <0.001 *** | 1.138 (1.09–1.188) | |
BSCS ** | 0.034 | 0.012 | 0.006 ** | 1.034 (1.01–1.059) | |
SCL Depression | −0.008 | 0.012 | 0.496 | 0.992 (0.968–1.016) | |
SCL Anxiety *** | 0.082 | 0.015 | <0.001 *** | 1.086 (1.054–1.118) | |
BIS | −0.031 | 0.025 | 0.215 | 0.969 (0.923–1.018) | |
BAS reward responsiveness | 0.005 | 0.039 | 0.908 | 1.005 (0.93–1.085) | |
BAS drive * | 0.100 | 0.041 | 0.015 * | 1.105 (1.02–1.198) | |
BAS fun seeking | −0.063 | 0.042 | 0.133 | 0.939 (0.865–1.019) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, M.J.; Lee, H.; Lee, T.-H.; Cho, H.; Jung, D.J.; Kim, D.-J.; Choi, I.Y. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics. Int. J. Environ. Res. Public Health 2018, 15, 40. https://doi.org/10.3390/ijerph15010040
Rho MJ, Lee H, Lee T-H, Cho H, Jung DJ, Kim D-J, Choi IY. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics. International Journal of Environmental Research and Public Health. 2018; 15(1):40. https://doi.org/10.3390/ijerph15010040
Chicago/Turabian StyleRho, Mi Jung, Hyeseon Lee, Taek-Ho Lee, Hyun Cho, Dong Jin Jung, Dai-Jin Kim, and In Young Choi. 2018. "Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics" International Journal of Environmental Research and Public Health 15, no. 1: 40. https://doi.org/10.3390/ijerph15010040
APA StyleRho, M. J., Lee, H., Lee, T. -H., Cho, H., Jung, D. J., Kim, D. -J., & Choi, I. Y. (2018). Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics. International Journal of Environmental Research and Public Health, 15(1), 40. https://doi.org/10.3390/ijerph15010040