Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Methods
2.3. Model
3. Results
3.1. Statistical Descriptions
3.2. Model Comparison and Fitting
3.3. Results of the Model
3.4. Convergence and Sensitivity Analysis of SCM Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, W.W.; Gao, R.L.; Liu, L.S.; Zhu, M.L.; Wang, W.; Wang, Y.J.; Wu, Z.S.; Li, H.J.; Gu, D.F.; Yang, Y.J.; et al. China Cardiovascular Diseases Report 2015: A Summary. J. Geriatr. Cardiol. 2017, 14, 1–10. [Google Scholar] [PubMed]
- Chinese Center for Disease Control and Prevention. Chinese Chronic Disease and Its Risk Factors Monitoring Report. Available online: http://www.chinacdc.cn (accessed on 20 December 2017).
- Ostfeld, R.S.; Glass, G.E.; Keesing, F. Spatial Epidemiology: An Emerging (or Re-Emerging) Discipline. Trends Ecol. Evol. 2005, 20, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Berke, O. Choropleth Mapping of Regional Count Data of Echinococcus Multilocularis among Red Foxes in Lower Saxony, Germany. Prev. Vet. Med. 2001, 52, 119–131. [Google Scholar] [CrossRef]
- Moraga, P.; Lawson, A.B. Gaussian Component Mixtures and CAR Models in Bayesian Disease Mapping. Comput. Stat. Data Anal. 2012, 56, 1417–1433. [Google Scholar] [CrossRef]
- Gelman, A. Prior Distributions for Variance Parameters in Hierarchical Models (Comment on an Article by Browne and Draper). Bayesian Anal. 2006, 1, 515–533. [Google Scholar] [CrossRef]
- Knorr-Held, L.; Best, N.G. A Shared Component Model for Detecting Joint and Selective Clustering of Two Diseases. J. R. Stat. Soc. Ser. A Stat. Soc. 2001, 164, 73–85. [Google Scholar] [CrossRef]
- Assuncao, R.M.; Reis, I.A.; Oliveira, C.D. Diffusion and Prediction of Leishmaniasis in a Large Metropolitan Area in Brazil with a Bayesian Space-Time Model. Stat. Med. 2001, 20, 2319–2335. [Google Scholar] [CrossRef] [PubMed]
- MacNab, Y.C. Mapping Disability-Adjusted Life Years: A Bayesian Hierarchical Model Framework for Burden of Disease and Injury Assessment. Stat. Med. 2007, 26, 4746–4769. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.B.; Jarup, L.; Best, N.; Wakefield, J.; Elliott, P. Spatial Variation and Temporal Trends of Testicular Cancer in Great Britain. Br. J. Cancer 2001, 84, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Bernardinelli, L.; Pascutto, C.; Montomoli, C.; Gilks, W. Investigating the Genetic Association between Diabetes and Malaria: An Application of Bayesian Ecological Regression Models with Errors in Covariates. In Spatial Epidemiology. Methods and Applications; Oxford University Press Inc.: New York, NY, USA, 2000; pp. 286–301. [Google Scholar]
- Ancelet, S.; Abellan, J.J.; Vilas, V.J.D.R.; Birch, C.; Richardson, S. Bayesian Shared Spatial-Component Models to Combine and Borrow Strength across Sparse Disease Surveillance Sources. Biom. J. 2012, 54, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Held, L.; Graziano, G.; Frank, C.; Rue, H. Joint Spatial Analysis of Gastrointestinal Infectious Diseases. Stat. Methods Med. Res. 2006, 15, 465–480. [Google Scholar] [CrossRef] [PubMed]
- MacNab, Y.C. On Bayesian Shared Component Disease Mapping and Ecological Regression with Errors in Covariates. Stat. Med. 2010, 29, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Earnest, A.; Beard, J.R.; Morgan, G.; Lincoln, D.; Summerhayes, R.; Donoghue, D.; Dunn, T.; Muscatello, D.; Mengersen, K. Small Area Estimation of Sparse Disease Counts Using Shared Component Models-Application to Birth Defect Registry Data in New South Wales, Australia. Health Place 2010, 16, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Biggeri, A.; Catelan, D.; Dreassi, E. The Epidemic of Lung Cancer in Tuscany (Italy): A Joint Analysis of Male and Female Mortality by Birth Cohort. Spat. Spatio-Temporal Epidemiol. 2009, 1, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Abellan, J.J.; Best, N. Bayesian Spatio-Temporal Analysis of Joint Patterns of Male and Female Lung Cancer Risks in Yorkshire (UK). Stat. Methods Med. Res. 2006, 15, 385–407. [Google Scholar] [CrossRef] [PubMed]
- Hipp, J.A.; Chalise, N. Spatial Analysis and Correlates of County-Level Diabetes Prevalence, 2009–2010. Prev. Chronic Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Held, L.; Natario, I.; Fenton, S.E.; Rue, H.; Becker, N. Towards Joint Disease Mapping. Stat. Methods Med. Res. 2005, 14, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Ibanez-Beroiz, B.; Librero-Lopez, J.; Peiro-Moreno, S.; Bernal-Delgado, E. Shared Component Modelling as an Alternative to Assess Geographical Variations in Medical Practice: Gender Inequalities in Hospital Admissions for Chronic Diseases. BMC Med. Res. Methodol. 2011, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhang, M.; Li, Y.; Luan, H.; Liang, S.; Ren, F. Spatial Patterns of Ischemic Heart Disease in Shenzhen, China: A Bayesian Multi-Disease Modelling Approach to Inform Health Planning Policies. Int. J. Environ. Res. Public Health 2016. [Google Scholar] [CrossRef] [PubMed]
- MacNab, Y.C. Spline Smoothing in Bayesian Disease Mapping. Environmentrics 2007, 18, 727–744. [Google Scholar] [CrossRef]
- Onicescu, G.; Hill, E.G.; Lawson, A.B.; Korte, J.E.; Gillespie, M.B. Joint Disease Mapping of Cervical and Male Oropharyngeal Cancer Incidence in Blacks and Whites in South Carolina. Spat. Spatio-Temporal Epidemiol. 2010, 1, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Steinman, H.A.; Donson, H.; Kawalski, M.; Toerien, A.; Potter, P.C. Bronchial Hyper-Responsiveness and Atopy in Urban, Peri-Urban and Rural South African Children. Pediatr. Allergy Immunol. 2003, 14, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Duan, X.; Huang, G. Prevalence and Relevant Influence Factors of Isolated Systolic Hypertension in the Elderly in China. Zhonghua Xin Xue Guan Bing Za Zhi 2003, 31, 456–459. [Google Scholar]
- Bowman, T.S.; Gaziano, J.M.; Buring, J.E.; Sesso, H.D. A Prospective Study of Cigarette Smoking and Risk of Incident Hypertension in Women. J. Am. Coll. Cardiol. 2007, 50, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Ueshima, H.; Zhang, X.H.; Choudhury, S.R. Epidemiology of Hypertension in China and Japan. J. Hum. Hypertens. 2000, 14, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Sung, F.; Su, T.; Chien, K.; Hsu, H.; Lee, Y. Two-Year Change in Body Mass Index and Subsequent Risk of Hypertension Among Men and Women in a Taiwan Community. J. Hypertens. 2009, 27, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.T. Increases in Weight and Body Size Increase the Odds for Hypertension during 7 Years of Follow-Up. Obesity 2008, 16, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Ruixing, Y.; Weixiong, L.; Hanjun, Y.; Dezhai, Y.; Shuquan, L.; Shangling, P.; Qiming, F.; Jinzhen, W.; Jianting, G.; Yaju, D. Diet, Lifestyle, and Blood Pressure of the Middle-Aged and Elderly in the Guangxi Bai Ku Yao and Han Populations. Am. J. Hypertens. 2008, 21, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Ukoh, V.A.; Ukoh, G.C.; Okosun, R.E.; Azubike, E. Salt Intake in First Degree Relations of Hypertensive and Normotensive Nigerians. East Afr. Medi. J. 2004, 81, 524–528. [Google Scholar] [CrossRef]
- He, F.J.; Markandu, N.D.; MacGregor, G.A. Modest Salt Reduction Lowers Blood Pressure in Isolated Systolic Hypertension and Combined Hypertension. Hypertension 2005, 46, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Dochi, M.; Sakata, K.; Oishi, M.; Tanaka, K.; Kobayashi, E.; Suwazono, Y. Smoking as an Independent Risk Factor for Hypertension: A 14-Year Longitudinal Study in Male Japanese Workers. Tohoku J. Exp. Med. 2009, 217, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Au, B.T.; Blizzard, L.; Schmidt, M.D.; Pham, H.L.; Granger, R.H.; Dwyer, T. The Association between Smoking and Hypertension in a Population-Based Sample of Vietnamese Men. J. Hypertens. 2010, 28, 245–250. [Google Scholar]
- Dong, G.; Qian, Z.M.; Xaverius, P.K.; Trevathan, E.; Maalouf, S.; Parker, J.; Yang, L.; Liu, M.; Wang, D.; Ren, W.; et al. Association between Long-Term Air Pollution and Increased Blood Pressure and Hypertension in China. Hypertension 2013, 61, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lai, D.J.; Fang, Y. Spatial Analysis of Gender Variation in the Prevalence of Hypertension among the Middle-Aged and Elderly Population in Zhejiang Province, China. BMC Public Health 2016. [Google Scholar] [CrossRef] [PubMed]
Model No. | Characteristic |
---|---|
1 | Knot at 1997, with RS0i(t) |
2 | Knot at 1997, without RS0i(t) |
3 | Knots at 2000, with RS0i(t) |
4 | Knots at 2000, without RS0i(t) |
5 | Knots at 1997 and 2000, without RS0i(t) and RSji(t) |
6 | Knots at 1997 and 2004, without RS0i(t) and RSji(t) |
7 | Knots at 1997, 2000 and 2004, without RS0i(t) and RSji(t) |
Province | Variable | 1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 |
---|---|---|---|---|---|---|---|---|---|
Jiangsu | Number | 1255 | 1213 | 1443 | 1277 | 1186 | 1131 | 1255 | 1178 |
Cases | 134 | 164 | 530 | 302 | 350 | 426 | 491 | 435 | |
Prevalence (%) | 10.68 | 13.52 | 36.73 | 23.65 | 29.51 | 37.67 | 39.12 | 36.93 | |
Shandong | Number | 1195 | 1092 | 1380 | 1146 | 1111 | 1131 | 1142 | 1084 |
Cases | 249 | 234 | 532 | 345 | 361 | 336 | 377 | 388 | |
Prevalence (%) | 20.84 | 21.43 | 38.55 | 30.10 | 32.49 | 29.71 | 33.01 | 35.79 | |
Henan | Number | 1124 | 1036 | 1498 | 1127 | 1338 | 1191 | 1239 | 1183 |
Cases | 166 | 192 | 599 | 303 | 564 | 500 | 489 | 488 | |
Prevalence (%) | 14.77 | 18.53 | 39.99 | 26.89 | 42.15 | 41.98 | 39.47 | 41.25 | |
Hubei | Number | 1269 | 1191 | 1513 | 1167 | 1146 | 1049 | 1068 | 1015 |
Cases | 188 | 229 | 555 | 231 | 347 | 375 | 377 | 356 | |
Prevalence (%) | 14.81 | 19.23 | 36.68 | 19.79 | 30.28 | 35.75 | 35.30 | 35.07 | |
Hunan | Number | 1259 | 1211 | 1405 | 1184 | 1142 | 1224 | 1196 | 1131 |
Cases | 193 | 155 | 443 | 290 | 265 | 242 | 341 | 317 | |
Prevalence (%) | 15.33 | 12.80 | 31.53 | 24.49 | 23.20 | 19.77 | 28.51 | 28.03 | |
Guangxi | Number | 1362 | 1359 | 1688 | 1264 | 1356 | 1316 | 1443 | 1431 |
Cases | 172 | 173 | 619 | 201 | 353 | 293 | 471 | 380 | |
Prevalence (%) | 12.63 | 12.73 | 36.67 | 15.90 | 26.03 | 22.26 | 32.64 | 26.55 | |
Guizhou | Number | 1549 | 1367 | 1687 | 1299 | 1216 | 1181 | 1138 | 1079 |
Cases | 168 | 180 | 424 | 204 | 232 | 223 | 315 | 258 | |
Prevalence (%) | 10.85 | 13.17 | 25.13 | 15.70 | 19.08 | 18.88 | 27.68 | 23.91 |
Gender | Variable | Value | 1991 | 1993 | 1997 | 2000 | 2004 | 2006 | 2009 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|
Male | Age | 12–29 | 40.30 | 37.97 | 37.87 | 30.39 | 23.46 | 17.97 | 17.14 | 15.60 |
30–44 | 27.84 | 28.39 | 27.17 | 26.59 | 25.55 | 27.59 | 25.50 | 22.45 | ||
45–59 | 19.01 | 19.71 | 21.15 | 26.37 | 30.59 | 31.04 | 31.71 | 32.59 | ||
60–100 | 12.86 | 13.92 | 13.80 | 16.65 | 20.40 | 23.40 | 25.65 | 29.35 | ||
Female | Age | 12–29 | 39.31 | 35.13 | 34.33 | 26.16 | 19.43 | 15.59 | 15.46 | 14.22 |
30–44 | 28.82 | 30.84 | 28.38 | 28.55 | 27.11 | 28.87 | 25.36 | 23.04 | ||
45–59 | 18.39 | 19.91 | 20.88 | 26.51 | 31.02 | 30.49 | 31.86 | 32.70 | ||
60–100 | 13.48 | 14.12 | 16.41 | 18.78 | 22.43 | 25.05 | 27.32 | 30.04 |
Year | Moran’s I | p-Value |
---|---|---|
1991 | –0.0911 | 0.037 |
1993 | 0.5002 | 0.042 |
1997 | 0.0344 | 0.227 |
2000 | 0.1270 | 0.216 |
2004 | 0.3986 | 0.044 |
2006 | 0.4739 | 0.047 |
2009 | 0.0616 | 0.269 |
2011 | 0.6925 | 0.012 |
Model | Dbar | pD | DIC |
---|---|---|---|
1 | 1569.0 | 11.82 | 1581.0 |
2 | 133.7.0 | 24.9 | 412.2 |
3 | 1342.0 | 14.2 | 1356.0 |
4 | 1323.0 | 25.0 | 1348.0 |
5 | 1105.0 | 25.0 | 1130.0 |
6 | 1263.0 | 25.2 | 1288.0 |
7 | 1338.0 | 19.6 | 1357.0 |
Parameter | Priors 1 | Priors 2 | Priors 3 |
---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |
Exp(αj) | |||
Males | 0.340 (0.312–0.370) | 0.340 (0.312–0.369) | 0.340 (0.312–0.369) |
Females | 0.948 (0.891–1.007) | 0.949 (0.892–1.009) | 0.949 (0.892–1.009) |
δ1 | 0.161 (0.141–0.182) | 0.162 (0.141–0.184) | 0.162 (0.143–0.182) |
OR | |||
Males | 0.841 (0.834–0.849) | 0.841 (0.834–0.849) | 0.841 (0.834–0.849) |
Females | 0.175 (0.153–0.196) | 0.166 (0.153–0.197) | 0.166 (0.153–0.197) |
DIC(pD) | DIC = 1105 (pD = 25.0) | DIC = 1106 (pD = 26.2) | DIC = 1108 (pD = 26.1) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Xu, L.; Zhou, Z.; Wu, Y.; Fang, Y. Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China. Int. J. Environ. Res. Public Health 2018, 15, 55. https://doi.org/10.3390/ijerph15010055
Ye Z, Xu L, Zhou Z, Wu Y, Fang Y. Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China. International Journal of Environmental Research and Public Health. 2018; 15(1):55. https://doi.org/10.3390/ijerph15010055
Chicago/Turabian StyleYe, Zirong, Li Xu, Zi Zhou, Yafei Wu, and Ya Fang. 2018. "Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China" International Journal of Environmental Research and Public Health 15, no. 1: 55. https://doi.org/10.3390/ijerph15010055
APA StyleYe, Z., Xu, L., Zhou, Z., Wu, Y., & Fang, Y. (2018). Application of SCM with Bayesian B-Spline to Spatio-Temporal Analysis of Hypertension in China. International Journal of Environmental Research and Public Health, 15(1), 55. https://doi.org/10.3390/ijerph15010055