Evaluation of Well Designs to Improve Access to Safe and Clean Water in Rural Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Microbial Quality Assessment
2.2. Water Microbial Diversity Assessment
2.3. Water Turbidity Assessment
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs (UNDESA). 2016 International Decade for Action “Water for Life” 2005–2016. Available online: http://www.un.org/waterforlifedecade/africa.shtml (accessed on 2 July 2017).
- World Bank Group. Improved Water Source, Rural (% of Rural Population with Access). 2017. Available online: http://data.worldbank.org/indicator/SH.H2O.SAFE.RU.ZS?name_desc=false (accessed on 2 July 2017).
- International Institute for Environment and Development (IIED). 2009 Africa’s Water Crisis: A Quarter Billion Dollar’s Down the Drain. Available online: https://www.iied.org/africas-water-crisis-quarter-billion-dollars-down-drain (accessed on 2 July 2017).
- Chowns, E. Detailed Review of a Recent Publications: Rural Water Supply System Cannot Succeed with Community Management Alone. Available online: https://waterinstitute.unc.edu/files/2015/06/wash-policy-research-digest-6.pdf (accessed on 15 November 2017).
- Harvey, P.; Reed, A. Community-managed water supplies in Africa: Sustainable or dispensable? J. Community Dev. 2007, 42, 365–378. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS). Tanzania in Figures 2015; Tanzania National Bureau of Statistics: Dar es Salaam, Tanzania, 2016.
- MSABI (Maji Safi kwa Afya Bora Ifakara). Overview Summary: Water, Sanitation and Education; MSABI Report; MSABI: Morogoro, Tanzania, 2010. [Google Scholar]
- MSABI (Maji Safi kwa Afya Bora Ifakara). A Review of Sanitation and Hygiene in Tanzania; MSABI Research Report; MSABI: Morogoro, Tanzania, 2013. [Google Scholar]
- WHO (World Health Organization)/UNICEF (The United Nations Children’s Fund). Progress on Sanitation and Drinking-Water: 2012 Update; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Bain, R.; Wright, J.; Yang, H.; Pedley, S.; Gundry, S.; Bartram, J. Improved but Not Necessarily Safe: Water Access and the Millennium Development Goals; GWF Discussion Paper 1225; Global Water Forum: Canberra, Australia, 2012. [Google Scholar]
- MSABI (Maji Safi kwa Afya Bora Ifakara). Available online: http://msabi.org/blog/sabi.org/2011/03/upload-of-recent-msabi-borehole-and.html (accessed on 4 May 2014).
- Water Wells for Africa. What’s the Cost. 2017. Available online: http://waterwellsforafrica.org/whats-the-cost/ (accessed on 2 July 2017).
- U.S. EPA (United States Environmental Protection Agency). Revised Total Coliform Rule. 2017. Available online: https://www.epa.gov/dwreginfo/revised-total-coliform-rule-and-total-coliform-rule (accessed on 24 September 2017).
- Messner, M.; Berger, P.; Javier, J. Total Coliform and E. coli in public water systems using undisinfected groundwater in the United States. Int. J. Hyg. Environ. Health 2017, 220, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.; Dellinger, P.; Minshew, B.; Falkow, S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 1981, 294, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.; Ewins, P. Properties of strains of Escherichia coli isolated from a variety of sources. J. Med. Microbiol. 1975, 8, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Minshew, H.; Jorgensen, J.; Swanstrum, M.; Grootes-Reuvecamp, A.; Falkow, S. Some characteristics of Escherichia coli strains isolated from extraintestinal infections of humans. J. Infect. Dis. 1978, 137, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Sum, R.; Swaminathan, M.; Rastogi, S.; Piloto, O.; Cheong, I. Beta-heamolytic bacteria selectively trigger liposome lysis, enabling rapid and accurate pathogen detection. ACS Sens. 2017, 2, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Toze, S. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999, 33, 3545–3556. [Google Scholar] [CrossRef]
- Queiroz, P.; Santos, M.; Sassarol, A.; Hársi, M.; Monezi, A.; Mehnert, U. Electropositive filter membrane as an alternative for the elimination of PCR inhibitors from sewage and water samples. Appl. Environ. Microbiol. 2001, 67, 4614–4618. [Google Scholar] [CrossRef] [PubMed]
- Huse, M.; Dethlefsen, L.; Huber, A.; Welch, M.; Relman, A. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008, 4, e1000255. [Google Scholar] [CrossRef]
- Liu, Z.; Lozupone, C.; Hamady, M.; Bushman, D.; Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 2007, 35. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Water Quality and Health: Review of Turbidity Information for Regulators and Water Suppliers; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Carrillo, M.; Estrada, E.; Hazen, C. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl. Environ. Microbiol. 1985, 50, 468–476. [Google Scholar] [PubMed]
- Lavoie, M. Identification of strains isolated as total and fecal coliforms and comparison of both groups as indicators of fecal pollution in tropical climates. Can. J. Microbiol. 1983, 29, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Kinssinger, J.; Gilmore, S.; Murray, R.; Solliday, J.; Clarke, B. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 1989, 33, 1588–1591. [Google Scholar] [CrossRef] [PubMed]
- Shankar, N.; Baghdaydan, A.; Gilmore, M. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 2002, 417, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Gneiding, K.; Frodl, R.; Funke, G. Identities of Microbacterium spp. Encountered in Human Clinical Specimens. J. Clin. Microbiol. 2008, 46, 3646–3652. [Google Scholar] [CrossRef] [PubMed]
- Grotiuz, G.; Sirok, A.; Gadea, P.; Varela, G.; Schelleto, F. Shiga Toxin 2-Producing Acinetobacter haemolyticus Associated with a Case of Bloody Diarrhea. J. Clin. Microbiol. 2006, 44, 3838–3841. [Google Scholar] [CrossRef] [PubMed]
- Kweon, M. Shigellosis: The current status of vaccine development. Curr. Opin. Infect. Dis. 2008, 21, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Jeong, H.; Oh, S.; Kim, H.; Kim, Y.; Lee, J.; Kook, J.; Kho, W.; Bae, W.; et al. Two cases of peritonitis caused by Kocuria marina in patients undergoing ambulatory peritoneal dialysis. J. Clin. Microbiol. 2009, 47, 3376–3378. [Google Scholar] [CrossRef] [PubMed]
- Purty, S.; Saranathan, R.; Prashanth, K.; Narayanan, K.; Asir, J.; Devi, C.; Amarnath, S. The expanding spectrum of human infections caused by Kocuria species: A case report and literature review. Emerg. Microbes Infect. 2013, 2, e71. [Google Scholar] [CrossRef] [PubMed]
- Traub, W.; Spohr, M. Antimicrobial drug susceptibility of clinical isolates of Acinetobacter species (A. baumannii, A. haemolyticus, genospecies 3, and genospecies 6). Antimicrob. Agents Chemother. 1989, 33, 1617–1619. [Google Scholar] [CrossRef] [PubMed]
- Zynchlinsky, A.; Prevost, M.; Sansonetti, P. Shigella flexneri induces apoptosis in infected macrophages. Nature 1992, 358, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Lida, S.; Taniguchi, H.; Kageyama, A.; Yazawa, K.; Chibana, H.; Murata, S.; Nomura, F.; Kroppenstedt, R.; Mikami, Y. Gordonia otitidis sp. nov., isolated from a patient with external otitis. IJSEM 2005, 55, 1871–1876. [Google Scholar]
- Verma, P.; Brown, J.; Nunez, V.; Morey, R.; Steigerwalt, A.; Kessler, A. Native valve endocarditis due to Gordonia polyisoprenivorans: Case report and review of literature of bloodstream infections caused by gordonia species. J. Clin. Microbiol. 2006, 44, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
MSABI Rope Pump Wells | Closed Wells | Open Wells | ||||||
---|---|---|---|---|---|---|---|---|
Average ± (Stdev) | Samples (n) | Average ± (Stdev) | Samples (n) | Average ± (Stdev) | Samples (n) | p-Value 3 | WHO Guideline (2017) | |
Total HPC (CFU/100 mL) | 7 × 104 ± 3 × 102 | 30 | 9 × 104 ± 8 × 102 | 29 | 7 × 105 ± 2 × 103 | 23 (23) | 0.18 | n.g.v |
Total Coliform 1 (CFU/100 mL) | 2 × 103 ± 1 × 103 | 34 (23) | 3 × 103 ± 3 × 103 | 30 (18) | 4 × 104 ± 3 × 104 | 29 (29) | 0.04 | n.g.v |
Coliform 2 (MPN/100 mL) | >88 ± 29 | 10 (10) | >102 ± 19 | 11 (11) | >160 | 14 (14) | 0.20 | n.g.v |
E. coli 2 (MPN/100 mL) | <22 ± 6 | 10 (2) | <22 ± 6 | 4 (11) | >154 ± 10 | 14 (14) | n/a | no given value 4 |
Turbidity (NTU) | 11 ± 2 | 34 | 28 ± 13 | 31 | 49 ± 15 | 29 | n/a | <5 5 |
Water Source | Well ID | Growth Condition | Sequence ID | Blast Accession | Sequence Length | Closest Relative (% Maximum Identity) |
---|---|---|---|---|---|---|
Open well | 03 | APW enrichment/TCBS | Ta | NR_042386.1, or NR_041706.1, or NR_041704.1 | 1509–1511 | E. canintestinii strain LMG 13590, E. sulfureus strain ATCC49903, E. casseliflavus strain (99%) |
Tb | NR_040789.1 | 1517 | E. faecalis strain JCM 5803 (98%) | |||
Blood anaerobic | BNa | NR_041248.1, or NR_024697.1, or NR_036880.1, or NR_043403.1 | 1306 | B. anthracis strain ATCC 14578, B. weihenstephanensis strain DSM 11821, B. mycoides strain 273, B. thuringiensis strain IAM 12077 (99%) | ||
BNb | NR_029249.1, or NR_027573.1, or NR_028611.1 | 1393–1489 | C. irregulare strain 6V1, or C. bartlettii DSM 13275, C. hiranonis DSM 13275 strain TO-931 (99%) | |||
BNe | NR_027549.1, or NR_02569.1, or NR_026331.1, or NR_02332.1 | 1473–1494 | E. fergusonii strain ATCC 35469 or E. albertinii or S. flexneri strain ATCC 29903 or S. dysenteriae strain ATCC 13313 (100%) | |||
04 | APW enrichment/TCBS | Tb | NR_040789.1 | 1517 | E. faecalis strain JCM 5803 (99%) | |
Blood anaerobic | BNa | NR_042386.1, or NR_041706.1, or NR_041704.1 | 1498–1511 | E. canintestinii strain LMG 13590, E. sulfureus strain ATCC49903, E. casseliflavus strain (99%) | ||
LB | Le | NR_025723.1 | 1440 | K. marina strain KMM 3905 (95%) | ||
07 | APW enrichment/TCBS | Tc | NR_026207.1 | 1460 | A. haemolyticus (99%) | |
Td | NR_040789.1 | 1517 | E. faecalis strain JCM 5803 (98%) | |||
Blood anaerobic | BNa | NR_041363.1 | 1433 | S. composti Ten et al. 2007 strain T5-12 (98%) | ||
Closed well | 01 | Blood anaerobic | BNa | NR_029288.1, or NR_026239.1 | 1394–1451 | C. hominis strain CE40, O. enterophila DSM 43856 (100%) |
LB | Lc | NR_025723.1, or NR_027193.1, or NR_026452.1 | 1440–1481 | K. marina KMM 3905, K. carphila strain CCM 132, K. rhizophila strain TA68 (94%) | ||
07 | APW enrichment/TCBS | Tb | NR_042386.1, or NR_041706.1, or NR_041704.1 | 1498–1511 | E. canintestinii strain LMG 13590, E. sulfureus strain ATCC49903, E. casseliflavus strain (99%) | |
Blood aerobic | Ba | NR_042262.1, or NR_025548.1 | 1490 | M. oleivorans (99%) | ||
R2A | Rd | NR_041873.1 | 1494 | R. corynebacterioides DSM 20151 (99%) | ||
Rc | NR_037048.1, or NR_042983.1, or NR_026163.1, or NR_026161.1 | 1429–1526 | M.kitamiense strain kitami C2, M. natoiense strain TNJL143-2, M. testacum DSM 20166, M. imperial DSM 20530 (100%) | |||
MSABI rope pump well | 20 | Blood aerobic | Bb | NR_026500.1 | 1547 | G. polyisoprenivorans (100%) |
Other rope pump well | n/a | LB | Lg | NR_042280.1, or NR_043238.1 | 1397–1482 | M. llatzerense, M. aubagnese (96%) |
Lf | NR_04988.1, or NR_037031.1, or NR_037030.1 | 1399–1471 | G. otitidis strain IFM 10032, G. sputi strain 3884, G. aichiensis strain E9028 (98%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilungo, A.; Powers, L.; Arnold, N.; Whelan, K.; Paterson, K.; Young, D. Evaluation of Well Designs to Improve Access to Safe and Clean Water in Rural Tanzania. Int. J. Environ. Res. Public Health 2018, 15, 64. https://doi.org/10.3390/ijerph15010064
Kilungo A, Powers L, Arnold N, Whelan K, Paterson K, Young D. Evaluation of Well Designs to Improve Access to Safe and Clean Water in Rural Tanzania. International Journal of Environmental Research and Public Health. 2018; 15(1):64. https://doi.org/10.3390/ijerph15010064
Chicago/Turabian StyleKilungo, Aminata, Linda Powers, Nathan Arnold, Kelli Whelan, Kurt Paterson, and Dale Young. 2018. "Evaluation of Well Designs to Improve Access to Safe and Clean Water in Rural Tanzania" International Journal of Environmental Research and Public Health 15, no. 1: 64. https://doi.org/10.3390/ijerph15010064
APA StyleKilungo, A., Powers, L., Arnold, N., Whelan, K., Paterson, K., & Young, D. (2018). Evaluation of Well Designs to Improve Access to Safe and Clean Water in Rural Tanzania. International Journal of Environmental Research and Public Health, 15(1), 64. https://doi.org/10.3390/ijerph15010064