Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Training Protocol
2.4. Blood Samples
2.5. Body Composition
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. The Effect of A Single Session of Nordic Walking Training
3.3. The Effect of 12 Weeks of Nordic Walking Training on Homocysteine and Iron Status
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Saha, T.; Chatterjee, M.; Sinha, S.; Rajamma, U.; Mukhopadhyay, K. Components of the folate metabolic pathway and adhd core traits: An exploration in eastern indian probands. J. Hum. Genet. 2017, 62, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.L.; Wang, C.H.; Pan, C.Y.; Chen, F.C. The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Front. Behav. Neurosci. 2015, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Zylberstein, D.E.; Bengtsson, C.; Bjorkelund, C.; Landaas, S.; Sundh, V.; Thelle, D.; Lissner, L. Serum homocysteine in relation to mortality and morbidity from coronary heart disease—A 24-year follow-up of the population study of women in gothenburg. Circulation 2004, 109, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, A.; Verdoia, M.; Cassetti, E.; Marino, P.; Suryapranata, H.; De Luca, G. Novara Atherosclerosis Study Group (NAS). Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb. Res. 2014, 134, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D'Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and alzheimer's disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Behera, J.; Bala, J.; Nuru, M.; Tyagi, S.C.; Tyagi, N. Homocysteine as a pathological biomarker for bone disease. J. Cell. Physiol. 2017, 232, 2704–2709. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, M.E.; Yesil, Y.; Ozturk, Z.A.; Cinar, E.; Kizilarslanoglu, C.; Halil, M.; Ulger, Z.; Yesil, N.K.; Cankurtaran, M.; Ariogul, S. The association between homocysteine (HCY) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch. Gerontol. Geriatr. 2012, 55, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Halon-Golabek, M.; Borkowska, A.; Kaczor, J.J.; Ziolkowski, W.; Flis, D.J.; Knap, N.; Kasperuk, K.; Antosiewicz, J. Hmsod1 gene mutation-induced disturbance in iron metabolism is mediated by impairment of akt signalling pathway. J. Cachexia Sarcopenia Muscle 2018, 9, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Padwal, M.K.; Murshid, M.; Nirmale, P.; Melinkeri, R.R. Association of serum ferritin levels with metabolic syndrome and insulin resistance. J. Clin. Diagn. Res. 2015, 9, BC11–BC13. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.R.; Herbig, A.K.; Stover, P.J. New perspectives on folate catabolism. Annu. Rev. Nutr. 2001, 21, 255–282. [Google Scholar] [CrossRef] [PubMed]
- Kortas, J.; Kuchta, A.; Prusik, K.; Ziemann, E.; Labudda, S.; Cwiklinska, A.; Wieczorek, E.; Jankowski, M.; Antosiewicz, J. Nordic walking training attenuation of oxidative stress in association with a drop in body iron stores in elderly women. Biogerontology 2017, 18, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortas, J.; Prusik, K.; Flis, D.; Ziemann, E.; Leaver, N.; Antosiewicz, J. Effect of nordic walking training on iron metabolism in elderly women. Clin. Interv. Aging 2015, 10, 1889–1896. [Google Scholar] [PubMed]
- Baggott, J.E.; Tamura, T. Iron-dependent formation of homocysteine from methionine and other thioethers. Eur. J. Clin. Nutr. 2007, 61, 1359–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gmiat, A.; Mieszkowski, J.; Prusik, K.; Kortas, J.; Kochanowicz, A.; Radulska, A.; Lipinski, M.; Tomczyk, M.; Jaworska, J.; Antosiewicz, J.; et al. Changes in pro-inflammatory markers and leucine concentrations in response to nordic walking training combined with vitamin D supplementation in elderly women. Biogerontology 2017, 18, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Gmiat, A.; Jaworska, J.; Micielska, K.; Kortas, J.; Prusik, K.; Prusik, K.; Lipowski, M.; Radulska, A.; Szupryczynska, N.; Antosiewicz, J.; et al. Improvement of cognitive functions in response to a regular nordic walking training in elderly women—A change dependent on the training experience. Exp. Gerontol. 2018, 104, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Grant, W.B.; Bhattoa, H.P.; Bayer, M.; Povoroznyuk, V.; Rudenka, E.; Ramanau, H.; Varbiro, S.; Rudenka, A.; Karczmarewicz, E.; et al. Vitamin d status in central europe. Int. J. Endocrinol. 2014, 2014, 589587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the american geriatrics society consensus statement on vitamin d for prevention of falls and their consequences. J. Am. Geriatr. Soc. 2014, 62, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Deminice, R.; Ribeiro, D.F.; Frajacomo, F.T.T. The effects of acute exercise and exercise training on plasma homocysteine: A meta-analysis. PLoS ONE 2016, 11, e0151653. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Akerstrom, T.C.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. (1985) 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsuga, J.; Tajti, G.; Papp, C.; Juhasz, B.; Gesztelyi, R. Fndc5/irisin, a molecular target for boosting reward-related learning and motivation. Med. Hypotheses 2016, 90, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Volgyi, E.; Tylavsky, F.A.; Lyytikainen, A.; Suominen, H.; Alen, M.; Cheng, S. Assessing body composition with dxa and bioimpedance: Effects of obesity, physical activity, and age. Obesity (Silver Spring) 2008, 16, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Qayyum, R. The relationship between 25-hydroxyvitamin D and homocysteine in asymptomatic adults. J. Clin. Endocrinol. Metab. 2014, 99, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Felig, P.; Wahren, J. Amino acid metabolism in exercising man. J. Clin. Investig. 1971, 50, 2703–2714. [Google Scholar] [CrossRef] [PubMed]
- Skovierova, H.; Vidomanova, E.; Mahmood, S.; Sopkova, J.; Drgova, A.; Cervenova, T.; Halasova, E.; Lehotsky, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef] [PubMed]
- Vincent, K.R.; Braith, R.W.; Bottiglieri, T.; Vincent, H.K.; Lowenthal, D.T. Homocysteine and lipoprotein levels following resistance training in older adults. Prev. Cardiol. 2003, 6, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Perakakis, N.; Triantafyllou, G.A.; Fernandez-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13, 324–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatouros, I.G. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. Clin. Chem. Lab. Med. 2018, 56, 525–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, P.; Brassard, P.; Adser, H.; Pedersen, M.V.; Leick, L.; Hart, E.; Secher, N.H.; Pedersen, B.K.; Pilegaard, H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009, 94, 1062–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, L.T.; Williams, J.S.; Shen, C.L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Pilc, A.; Majerczak, J.; Grandys, M.; Zapart-Bukowska, J.; Duda, K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 2008, 59 (Suppl. 7), 119–132. [Google Scholar] [PubMed]
- Zoladz, J.A.; Pilc, A. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J. Physiol. Pharmacol. 2010, 61, 533–541. [Google Scholar] [PubMed]
Nordic Walking | Supplemented Group | Control Group | Baseline | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | After 12w | p | Baseline | After 12w | p | Baseline | After 12w | p | p | |
Age (years) | 67.8 ± 5.4 | 66.9 ± 6.2 | 68.2 ± 6.7 | 0.71 | ||||||
Body-Weight (kg) | 68.7 ± 9.8 | 69.2 ± 9.1 | 0.11 | 69.2 ± 10.1 | 70.3 ± 10 | 0.00 | 72.4 ± 12.1 | 73.2 ± 11.8 | 0.48 | 0.34 |
BMI (kg m−2) | 26.3 ± 3.9 | 26.5 ± 3.7 | 0.06 | 26.4 ± 3.5 | 26.8 ± 3.7 | 0.20 | 27.4 ± 3.9 | 27.9 ± 4.1 | 0.10 | 0.43 |
Fat (kg) | 23.9 ± 7.4 | 24.4 ± 7.5 | 0.35 | 25.1 ± 7.3 | 25.9 ± 7.7 | 0.11 | 27.2 ± 7.9 | 27.6 ± 8.3 | 0.75 | 0.21 |
Fat (%) | 34.2 ± 6.4 | 34.7 ± 7.6 | 0.37 | 35.5 ± 6.7 | 36.1 ± 7.1 | 0.33 | 36.7 ± 6.7 | 35.7 ± 8.6 | 0.37 | 0.28 |
TBW (kg) | 32.8 ± 2.9 | 32.9 ± 3.7 | 0.91 | 32.5 ± 3.7 | 32.7 ± 3.8 | 0.90 | 33.1 ± 4.9 | 33.5 ± 4.8 | 0.33 | 0.81 |
FFM (kg) | 44.7 ± 4 | 44.8 ± 5 | 0.93 | 44.2 ± 5 | 44.6 ± 5.1 | 0.87 | 45.1 ± 6.6 | 45.6 ± 6.5 | 0.41 | 0.80 |
Variable | Before Training | 1 h after Training | p Value | Confidence Interval | |
---|---|---|---|---|---|
−95% | +95 | ||||
Homocysteine (µmol·dL−1) | 9.91 (2.78) | 8.70 (2.31) | 0.01 * | −2.16 | −0.27 |
hsCRP (mg·L−1) | 2.60 (2.21) | 2.50 (1.80) | 0.53 | −0.67 | 0.38 |
IL-6 (pg·mL−1) | 1.32 (0.68) | 2.19 (1.29) | 0.01 * | 0.19 | 1.43 |
BDNF (ng·mL−1) | 42.74 (19.92) | 44.43 (18.81) | 0.96 | −8.68 | 10.00 |
Irisin (ng·mL−1) | 12.00 (4.44) | 12.66 (4.68) | 0.46 | −1.14 | 2.47 |
After 12 weeks of NW training | |||||
Homocysteine (µmol·dL−1) | 8.90 (3.14) | 9.17 (2.97) | 0.46 | −0.97 | 0.45 |
hsCRP (mg·L−1) | 2.82 (3.04) | 2.45 (6.31) | 0.34 | −1.15 | 0.41 |
IL-6 (pg·mL−1) | 1.59 (0.78) | 2.26 (1.02) | 0.00 * | 0.43 | 0.94 |
BDNF (ng·mL−1) | 31.93 (15.91) | 26.16 (13.03) | 0.04 * | −12.65 | −0.1 |
Irisin (ng·mL−1) | 12.45 (6.31) | 12.84 (5.29) | 0.83 | −1.37 | 1.47 |
Nordic Walking (n = 33) | Control Group (n = 34) | Supplemented Group (n = 27) | rANOVA | |||||
---|---|---|---|---|---|---|---|---|
Baseline | After 12w | Baseline | After 12w | Baseline | After 12w | Interaction | ηp2 | |
Homocysteine (µmol·L−1) | 9.91 (2.78) | 8.90 * (3.14) | 8.93 (2.35) | 9.51 (3.42) | 9.85 (3.20) | 9.35 (2.69) | p = 0.03 | 0.08 |
Ferritin (ng·mL−1) | 94.23 (62.49) | 73.15* (47.04) | 127.94 (84.94) | 117.05 (87.51) | 137.85 (81.88) | 124.68 (72.11) | p = 0.29 | 0.03 |
Glucose (mg·dL−1) | 96.64 (12.25) | 95.06 (12.05) | 101.88 (12.33) | 98.29 (10.47) | 99.69 (13.62) | 98.54 (13.64) | p = 0.33 | 0.01 |
Vitamin D (ng·mL−1) | 23.01 (9.97) | 59.48* (27.61) | 24.64 (11.61) | 22.11 (9.52) | 27.37 (8.14) | 63.29 * (14.25) | p = 0.00 | 0.51 |
BDNF (ng·mL−1) | 42.74 (19.92) | 31.93 * (15.91) | 33.52 (12.61) | 28.96 (12.86) | 37.75 (8.08) | 16.94 * (12.78) | p = 0.01 | 0.11 |
Irisin (ng·mL−1) | 12.00 (4.44) | 12.45 (6.31) | 11.66 (4.06) | 11.89 (3.71) | 12.17 (7.62) | 11.30 (6.51) | p = 0.49 | 0.02 |
IL-6 (pg·mL−1) | 1.32 (0.68) | 1.59 (0.78) | 1.89 (0.98) | 1.86 (1.56) | 2.66 (1.38) | 3.11 (1.92) | p = 0.56 | 0.01 |
hsCRP (mg·L−1) | 2.60 (2.21) | 2.82 (3.04) | 3.73 (3.31) | 2.75 (3.18) | 2.01 (1.92) | 2.15 (1.97) | p = 0.08 | 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walentukiewicz, A.; Lysak-Radomska, A.; Jaworska, J.; Prusik, K.; Prusik, K.; Kortas, J.A.; Lipiński, M.; Babinska, A.; Antosiewicz, J.; Ziemann, E. Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. Int. J. Environ. Res. Public Health 2018, 15, 2064. https://doi.org/10.3390/ijerph15102064
Walentukiewicz A, Lysak-Radomska A, Jaworska J, Prusik K, Prusik K, Kortas JA, Lipiński M, Babinska A, Antosiewicz J, Ziemann E. Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. International Journal of Environmental Research and Public Health. 2018; 15(10):2064. https://doi.org/10.3390/ijerph15102064
Chicago/Turabian StyleWalentukiewicz, Anna, Anna Lysak-Radomska, Joanna Jaworska, Krzysztof Prusik, Katarzyna Prusik, Jakub Antoni Kortas, Marcin Lipiński, Anna Babinska, Jedrzej Antosiewicz, and Ewa Ziemann. 2018. "Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women" International Journal of Environmental Research and Public Health 15, no. 10: 2064. https://doi.org/10.3390/ijerph15102064
APA StyleWalentukiewicz, A., Lysak-Radomska, A., Jaworska, J., Prusik, K., Prusik, K., Kortas, J. A., Lipiński, M., Babinska, A., Antosiewicz, J., & Ziemann, E. (2018). Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. International Journal of Environmental Research and Public Health, 15(10), 2064. https://doi.org/10.3390/ijerph15102064