The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. Questionnaire
- Section A: Hypoacidity of the Stomach
- Section B: Hypofunction of Small Intestines and/or Pancreas
- Section C: Ulcers/Hyperacidity of the Stomach
- Section D: Colon/Large Intestine
- Section E: Liver/Gallbladder
- Section F: Intestinal Permeability/Leaky Gut Syndrome, Dysbiosis
- Section G: Gastric Reflux
2.3. Statistical Analyses
3. Results
3.1. Study Group
3.2. Dysbiotic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stanghellini, V. Functional Dyspepsia and Irritable Bowel Syndrome: Beyond Rome IV. Digest. Dis. 2017, 35 (Suppl. 1), 14–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisconi, C.F.; Sperber, A.D.; Fang, X.; Fukudo, S.; Gerson, M.J.; Kang, J.Y.; Schmulson, M. Multicultural Aspects in Functional Gastrointestinal Disorders (FGIDs). Gastroenterology 2016. [Google Scholar] [CrossRef] [PubMed]
- Robin, S.G.; Keller, C.; Zwiener, R.; Hyman, P.E.; Nurko, S.; Saps, M.; Di Lorenzo, C.; Shulman, R.J.; Hyams, J.S.; Palsson, O.; et al. Prevalence of Pediatric Functional Gastrointestinal Disorders Utilizing the Rome IV Criteria. J. Pediatr. 2018, 195, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Corsetti, M.; Camilleri, M.; Quigley, E.M.; Simren, M.; Suzuki, H.; Talley, N.J.; Tornblom, H.; van Oudenhove, L. Plausibility criteria for putative pathophysiological mechanisms in functional gastrointestinal disorders: A consensus of experts. Gut 2017. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016. [Google Scholar] [CrossRef] [PubMed]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. MetaHIT Consortium An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, T.H.M.P.; Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijssennagger, N.; Belzer, C.; Hooiveld, G.J.; Dekker, J.; van Mil, S.W.C.; Müller, M.; Kleerebezem, M.; van der Meer, R. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA 2015, 112, 10038–10043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blander, J.M.; Longman, R.S.; Iliev, I.D.; Sonnenberg, G.F.; Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 2017, 18, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Fulde, M.; Hornef, M.W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 2014, 260, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012, 483, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novince, C.M.; Whittow, C.R.; Aartun, J.D.; Hathaway, J.D.; Poulides, N.; Chavez, M.B.; Steinkamp, H.M.; Kirkwood, K.A.; Huang, E.; Westwater, C.; et al. Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health. Sci. Rep. 2017, 7, 5747. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Dallio, M.; DI Sarno, R.; Giorgio, V.; Miele, L. Gut microbiota, obesity and metabolic disorders. Minerva Gastroenterol. Dietol. 2017, 63, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Cryan, J.F.; Stanton, C. Gut Microbes and Brain Development Have Black Box Connectivity. Biol. Psychiatry 2018, 83, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Vanheel, H.; Vicario, M.; Vanuytsel, T.; Van Oudenhove, L.; Martinez, C.; Keita, Å.V.; Pardon, N.; Santos, J.; Söderholm, J.D.; Tack, J.; et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 2014, 63, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Feinle-Bisset, C.; Ghoshal, U.C.; Quigley, E.M.; Santos, J.; Vanner, S.; Vergnolle, N.; Zoetendal, E.G. The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology 2016. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Wang, B.; Stanghellini, V.; de Giorgio, R.; Cremon, C.; Di Nardo, G.; Trevisani, M.; Campi, B.; Geppetti, P.; Tonini, M.; et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007, 132, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Dembiński, A.; Warzecha, Z.; Ceranowicz, P.; Konturek, S.J. The role of capsaicin-sensitive sensory neurons and nitric oxide in regulation of gastric mucosal growth. J. Physiol. Pharmacol. 1995, 46, 351–362. [Google Scholar] [PubMed]
- Dembinski, A.; Warzecha, Z.; Konturek, P.J.; Ceranowicz, P.; Konturek, S.J. Influence of capsaicin-sensitive afferent neurons and nitric oxide (NO) on cerulein-induced pancreatitis in rats. Int. J. Pancreatol. 1996, 19, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, Z.; Dembiński, A.; Ceranowicz, P.; Stachura, J.; Tomaszewska, R.; Konturek, S.J. Effect of sensory nerves and CGRP on the development of caerulein-induced pancreatitis and pancreatic recovery. J. Physiol. Pharmacol. 2001, 52, 679–704. [Google Scholar] [PubMed]
- Warzecha, Z.; Dembiński, A.; Ceranowicz, P.; Konturek, P.C.; Stachura, J.; Tomaszewska, R.; Konturek, S.J. Calcitonin gene-related peptide can attenuate or augment pancreatic damage in caerulein-induced pancreatitis in rats. J. Physiol. Pharmacol. 1999, 50, 49–62. [Google Scholar] [PubMed]
- Holzer, P.; Farzi, A. Neuropeptides and the Microbiota-Gut-Brain Axis. Adv. Exp. Med. Biol. 2014, 817, 195–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, M.; Lin, H.C.; Enayati, P.; van den Burg, B.; Lee, H.-R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef] [PubMed]
- Carbonero, F.; Benefiel, A.C.; Gaskins, H.R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Teague, B.; Asiedu, S.; Moore, P.K. The smooth muscle relaxant effect of hydrogen sulphide in vitro: Evidence for a physiological role to control intestinal contractility. Br. J. Pharmacol. 2002, 137, 139–145. [Google Scholar] [CrossRef] [PubMed]
- McCusker, R.H.; Kelley, K.W. Immune-neural connections: How the immune system’s response to infectious agents influences behavior. J. Exp. Biol. 2013, 216, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Hoyles, L.; Snelling, T.; Umlai, U.-K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome 2018, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E. The neurobiology of stress and gastrointestinal disease. Gut 2000, 47, 861–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasi, C.; Nisita, C.; Cortopassi, S.; Corretti, G.; Gambaccini, D.; De Bortoli, N.; Fani, B.; Simonetti, N.; Ricchiuti, A.; Dell’Osso, L.; et al. Subthreshold Psychiatric Psychopathology in Functional Gastrointestinal Disorders: Can It Be the Bridge between Gastroenterology and Psychiatry? Gastroenterol. Res. Pract. 2017, 2017, 1953435. [Google Scholar] [CrossRef] [PubMed]
- Niemyjska, S.; Ukleja, A.; Ławiński, M. Evaluation of Irritable Bowel Syndrome Symptoms Amongst Warsaw University Students. Pol. Przegl. Chir. 2015, 87, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowski, B.A.; Pacholec, A.; Kudlicka, M.; Ehrmann, A.; Muszyński, J. Prevalence of abdominal symptoms in the Polish population. Gastroenterol. Rev. 2012, 7, 20–25. [Google Scholar] [CrossRef]
- Maciejewska, D.; Michalczyk, M.; Czerwińska-Rogowska, M.; Banaszczak, M.; Ryterska, K.; Jakubczyk, K.; Piotrwski, J.; Hołowko, J.; Drozd, A.; Wysokińki, P.; et al. Seeking Optimal Nutrition for Healthy Body Mass Reduction among Former Athletes. J. Hum. Kinet. 2017, 60, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Digestive Wellness. Available online: https://www.goodreads.com/work/best_book/1264033-digestive-wellness (accessed on 10 July 2018).
- Drossman, D.A.; Camilleri, M.; Mayer, E.A.; Whitehead, W.E. AGA technical review on irritable bowel syndrome. Gastroenterology 2002, 123, 2108–2131. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Patel, N.K. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.; Palsson, O.S.; Törnblom, H.; Sperber, A.D.; Whitehead, W.E.; Simrén, M. Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: A cross-sectional population-based study. Lancet Gastroenterol. Hepatol. 2018, 3, 252–262. [Google Scholar] [CrossRef]
- Aziz, I.; Palsson, O.S.; Törnblom, H.; Sperber, A.D.; Whitehead, W.E.; Simrén, M. The Prevalence and Impact of Overlapping Rome IV-Diagnosed Functional Gastrointestinal Disorders on Somatization, Quality of Life, and Healthcare Utilization: A Cross-Sectional General Population Study in Three Countries. Am. J. Gastroenterol. 2018, 113, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Dumitrascu, D.; Fukudo, S.; Gerson, C.; Ghoshal, U.C.; Gwee, K.A.; Hungin, A.P.S.; Kang, J.-Y.; Minhu, C.; Schmulson, M.; et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut 2017, 66, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtmann, G.J.; Talley, N.J. Inconsistent symptom clusters for functional gastrointestinal disorders in Asia: Is Rome burning? Gut 2018. [Google Scholar] [CrossRef] [PubMed]
- Palsson, O.S.; Whitehead, W.E.; van Tilburg, M.A.L.; Chang, L.; Chey, W.; Crowell, M.D.; Keefer, L.; Lembo, A.J.; Parkman, H.P.; Rao, S.S.; et al. Rome IV Diagnostic Questionnaires and Tables for Investigators and Clinicians. Gastroenterology 2016. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mahadeva, S.; Ghoshal, U.C. Epidemiological and clinical perspectives on irritable bowel syndrome in India, Bangladesh and Malaysia: A review. World J. Gastroenterol. 2017, 23, 6788–6801. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Shanahan, E.R.; Raj, A.; Koloski, N.A.; Fletcher, L.; Morrison, M.; Walker, M.M.; Talley, N.J.; Holtmann, G. Dyspepsia and the microbiome: Time to focus on the small intestine. Gut 2017, 66, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J. Editorial: Moving Away from Focussing on Gastric Pathophysiology in Functional Dyspepsia: New Insights and Therapeutic Implications. Am. J. Gastroenterol. 2017, 112, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Malinen, E.; Rinttilä, T.; Kajander, K.; Mättö, J.; Kassinen, A.; Krogius, L.; Saarela, M.; Korpela, R.; Palva, A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 2005, 100, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; Biagi, E.; Heilig, H.G.H.J.; Kajander, K.; Kekkonen, R.A.; Tims, S.; de Vos, W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.; Tang, J.; Pyleris, E.; Pistiki, A.; Barbatzas, C.; Brown, J.; Lee, C.C.; Harkins, T.T.; Kim, G.; Weitsman, S.; et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 2015, 50, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Vicario, M.; González-Castro, A.M.; Martínez, C.; Lobo, B.; Pigrau, M.; Guilarte, M.; de Torres, I.; Mosquera, J.L.; Fortea, M.; Sevillano-Aguilera, C.; et al. Increased humoral immunity in the jejunum of diarrhoea-predominant irritable bowel syndrome associated with clinical manifestations. Gut 2015, 64, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rhee, P.-L.; Kim, H.S.; Lee, J.H.; Kim, Y.-H.; Kim, J.J.; Rhee, J.C. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhea predominant irritable bowel syndrome. J. Gastroenterol. Hepatol. 2006, 21, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Vicario, M.; Ramos, L.; Lobo, B.; Mosquera, J.L.; Alonso, C.; Sánchez, A.; Guilarte, M.; Antolín, M.; de Torres, I.; et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am. J. Gastroenterol. 2012, 107, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Koloski, N.A.; Jones, M.; Talley, N.J. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: A 1-year population-based prospective study. Aliment. Pharmacol. Ther. 2016, 44, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.P.; Tack, J.; Van Oudenhove, L.; Walker, M.M.; Holtmann, G.; Koloski, N.A.; Talley, N.J. Mood and Anxiety Disorders Precede Development of Functional Gastrointestinal Disorders in Patients but Not in the Population. Clin. Gastroenterol. Hepatol. 2017, 15, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.-Y.; Cheng, C.-W.; Tang, X.-D.; Bian, Z.-X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 14126–14131. [Google Scholar] [CrossRef] [PubMed]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol. 2011, 62, 591–599. [Google Scholar] [PubMed]
- Rodiño-Janeiro, B.K.; Alonso-Cotoner, C.; Pigrau, M.; Lobo, B.; Vicario, M.; Santos, J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J. Neurogastroenterol. Motil. 2015, 21, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Tomas, J.; Brenner, C.; Sansonetti, P.J. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 2017, 141, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Shimokawa, O.; Kaneko, T.; Nagano, Y.; Rai, K.; Hyodo, I. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J. Clin. Biochem. Nutr. 2011, 48, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K.D.; Lanas, A. Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology 2018, 154, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Leung, F.W.; Su, K.C.; Pique, J.M.; Thiefin, G.; Passaro, E.; Guth, P.H. Superior mesenteric artery is more important than inferior mesenteric artery in maintaining colonic mucosal perfusion and integrity in rats. Digest. Dis. Sci. 1992, 37, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Matuszyk, A.; Ceranowicz, D.; Warzecha, Z.; Ceranowicz, P.; Fyderek, K.; Gałązka, K.; Cieszkowski, J.; Bonior, J.; Jaworek, J.; Pihut, M.; et al. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats., The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats. Biomed. Res. Int. 2015, 2015, 718314. [Google Scholar] [CrossRef] [PubMed]
- Matuszyk, A.; Ceranowicz, P.; Warzecha, Z.; Cieszkowski, J.; Bonior, J.; Jaworek, J.; Kuśnierz-Cabala, B.; Konturek, P.; Ambroży, T.; Dembiński, A. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats. Oxid. Med. Cell. Longev. 2016, 2016, 2834386. [Google Scholar] [CrossRef] [PubMed]
- Konarska, K.; Cieszkowski, J.; Warzecha, Z.; Ceranowicz, P.; Chmura, A.; Kuśnierz-Cabala, B.; Gałązka, K.; Kowalczyk, P.; Miskiewicz, A.; Konturek, T.J.; et al. Treatment with Obestatin-A Ghrelin Gene-Encoded Peptide-Reduces the Severity of Experimental Colitis Evoked by Trinitrobenzene Sulfonic Acid. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Naito, Y.; Inoue, R.; Kashiwagi, S.; Uchiyama, K.; Mizushima, K.; Tsuchiya, S.; Okayama, T.; Dohi, O.; Yoshida, N.; et al. The influence of long-term use of proton pump inhibitors on the gut microbiota: An age-sex-matched case-control study. J. Clin. Biochem. Nutr. 2018, 62, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Kashiwagi, K.; Takagi, T.; Andoh, A.; Inoue, R. Intestinal Dysbiosis Secondary to Proton-Pump Inhibitor Use. Digestion 2018, 97, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bastard, Q.; Al-Ghalith, G.A.; Grégoire, M.; Chapelet, G.; Javaudin, F.; Dailly, E.; Batard, E.; Knights, D.; Montassier, E. Systematic review: Human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 2018, 47, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, M.A.; Spiegel, B.M.R.; Chang, L. Meta-analysis: Do irritable bowel syndrome symptoms vary between men and women? Aliment. Pharmacol. Ther. 2010, 32, 738–755. [Google Scholar] [CrossRef] [PubMed]
- Meleine, M.; Matricon, J. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones. World J. Gastroenterol. 2014, 20, 6725–6743. [Google Scholar] [CrossRef] [PubMed]
- Daniels, K.; Mosher, W.D. Contraceptive Methods Women Have ever Used: United States, 1982–2010; Natl Health Stat Report; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2013; pp. 1–15.
- Family Planning—United Nations Population Division | Department of Economic and Social Affairs. Available online: http://www.un.org/en/development/desa/population/publications/dataset/contraception/wcu2017.shtml (accessed on 7 October 2018).
Section | Number of Points Stating Priority for Healing Process | |||
---|---|---|---|---|
Low Priority | Moderate Priority | High Priority | ||
A | 0–4 | 5–8 | >9 | |
B | 0–4 | 5–8 | >9 | |
C | 0–4 | 5–8 | >9 | |
D | 0–4 | 5–8 | >9 | |
E | 0–2 | 3–5 | >6 | |
G | 0–3 | 4–6 | >7 | |
Low priority | Mild priority | Moderate priority | High priority | |
F | 0–5 | 6–10 | 7–19 | >20 |
Variable | Mean | Standard Deviation | Median |
---|---|---|---|
Age (years) | 25.20 | 6.32 | 24 |
Medications used currently | 3.79 | 4.92 | 1 |
Food, nutrition | 5.12 | 2.72 | 5 |
Lifestyle | 1.36 | 1.00 | 1 |
Overall dysbiotic factors | 10.27 | 5.75 | 10 |
Hypoacidity of the stomach | 3.80 | 3.18 | 3 |
Hypofunction of small intestines and/or pancreas | 6.40 | 5.62 | 5 |
Ulcers/hyperacidity of the stomach | 3.10 | 4.01 | 2 |
Colon/large intestine | 4.74 | 3.45 | 4 |
Liver/gallbladder | 5.28 | 5.17 | 4 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 6.38 | 5.11 | 6 |
Gastric reflux | 1.86 | 2.42 | 1 |
Section | Median (Q3–Q1) | p | |
---|---|---|---|
Females | Males | ||
(n = 239) | (n = 189) | ||
Hypoacidity of the stomach | 4.0 (4.0) | 3.0 (4.0) | 0.0012 |
Hypofunction of small intestines and/or pancreas | 6.0 (9.0) | 5.0 (6.0) | 0.017 |
Ulcers/hyperacidity of the stomach | 3.0 (5.0) | 1.0 (4.0) | <0.0001 |
Colon/large intestine | 5.0 (5.0) | 4.0 (2.0) | <0.0001 |
Liver/gallbladder | 5.0 (8.0) | 3.0 (5.25) | <0.0001 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 6.0 (7.0) | 4.0 (6.0) | <0.0001 |
Gastric reflux | 1.0 (3.0) | 4.0 (6.0) | 0.1857 |
Variable | Hypoacidity of the Stomach (n = 156) * | p | |||
---|---|---|---|---|---|
Gender | Low Priority | Moderate Priority | High Priority | ||
n (%) | n (%) | n (%) | |||
Females | 143 (59.83) | 64 (26.78) | 32 (13.39) | 0.0005 | |
Males | 129 (68.25) | 54 (28.57) | 6 (3.17) | ||
Hypofunction of small intestines and/or pancreas (n = 233) * | p | ||||
Females | 106 (44.35) | 47 (19.66) | 86 (35.98) | 0.0153 | |
Males | 89 (47.09) | 54 (28.57) | 46 (24.34) | ||
Ulcers/hyperacidity of the stomach (n = 109) * | p | ||||
Females | 167 (69.87) | 45 (18.83) | 27 (11.30) | 0.04 | |
Males | 152 (80.42) | 25 (13.23) | 12 (6.35) | ||
Colon/large intestine (n = 201) * | p | ||||
Females | 107 (44.77) | 93 (38.91) | 39 (16.32) | 0.0001 | |
Males | 120 (63.49) | 57 (30.16) | 12 (6.35) | ||
Liver/gallbladder (n = 266) * | p | ||||
Females | 82 (34.31) | 40 (16.74) | 117 (48.95) | <0.0001 | |
Males | 80 (42.33) | 55 (29.10) | 54 (28.57) | ||
Gastric reflux (n = 83) * | p | ||||
Females | 192 (80.33) | 31 (12.15) | 16 (6.69) | 0.2047 | |
Males | 153 (80.95) | 30 (15.87) | 6 (3.17) | ||
Intestinal permeability/leaky gut syndrome, dysbiosis (n = 219) * | p | ||||
Low priority | Mild priority | Moderate priority | High priority | ||
Females | 93 (38.91) | 84 (35.15) | 55 (23.01) | 7 (2.93) | <0.0001 |
Males | 116 (61.37) | 48 (25.40) | 25 (25.40) | (0) |
Median (Q3–Q1) | ||||
---|---|---|---|---|
Variable | ANTIBIOTICS (n = 168) | NO ANTIBIOTICS (n = 260) | p value | FDR p value |
Hypoacidity of the stomach | 4.0 (5.0) | 3.0 (4.0) | 0.0808 | 0.2767 |
Hypofunction of small intestines and/or pancreas | 6.0 (8.0) | 5.0 (7.0) | 0.3459 | 0.3459 |
Ulcers/hyperacidity of the stomach | 2.0 (5.0) | 2.0 (4.0) | 0.2011 | 0.2767 |
Colon/large intestine | 4.5 (4.0) | 4.0 (4.0) | 0.2372 | 0.2767 |
Liver/gallbladder | 4.0 (6.5) | 4.0 (6.5) | 0.1755 | 0.2767 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 6.0 (7.0) | 5.0 (7.0) | 0.0704 | 0.2767 |
Gastric reflux | 1.0 (3.0) | 1.0 (3.0) | 0.1857 | 0.2767 |
Variable | PPIs (n = 121) | NO PPIs (n = 307) | p | FDR p value |
Hypoacidity of the stomach | 3.0 (5.0) | 3.0 (4.0) | 0.2226 | 0.3116 |
Hypofunction of small intestines and/or pancreas | 5.0 (8.25) | 5.0 (7.0) | 0.7345 | 0.7345 |
Ulcers/hyperacidity of the stomach | 2.0 (6.0) | 2.0 (4.0) | 0.0902 | 0.1933 |
Colon/large intestine | 4.0 (4.25) | 1.0 (3.0) | 0.3267 | 0.3812 |
Liver/gallbladder | 4.0 (7.0) | 4.0 (6.0) | 0.1105 | 0.1934 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 6.0 (8.0) | 5.0 (7.0) | 0.0288 | 0.1484 |
Gastric reflux | 1.0 (4.0) | 1.0 (3.0) | 0.0424 | 0.1484 |
Variable | NSAIDs (n = 182) | NO NSAIDs (n = 246) | p | FDR p value |
Hypoacidity of the stomach | 4.0 (5.0) | 1.0 (3.0) | 0.0101 | 0.0353 |
Hypofunction of small intestines and/or pancreas | 6.0 (8.0) | 4.5 (7.0) | 0.2892 | 0.2892 |
Ulcers/hyperacidity of the stomach | 2.0 (5.0) | 1.0 (4.0) | 0.0626 | 0.1095 |
Colon/large intestine | 4.0 (4.0) | 4.0 (4.0) | 0.2614 | 0.2892 |
Liver/gallbladder | 4.0 (7.0) | 3.0 (6.0) | 0.0184 | 0.0429 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 6.0 (7.0) | 4.0 (7.0) | 0.008 | 0.0353 |
Gastric reflux | 1.0 (3.0) | 1.0 (2.0) | 0.0893 | 0.1250 |
Variable | Permanent stress (n = 149) | No permanent stress (n = 279) | p | FDR p value |
Hypoacidity of the stomach | 5.0 (5.0) | 3.0 (4.0) | <0.0001 | 0.0001 |
Hypofunction of small intestines and/or pancreas | 8.0 (10.0) | 4.0 (6.0) | <0.0001 | 0.0001 |
Ulcers/hyperacidity of the stomach | 4.0 (6.0) | 1.0 (3.0) | <0.0001 | 0.0001 |
Colon/large intestine | 6.0 (4.0) | 3.0 (3.0) | <0.0001 | 0.0001 |
Liver/gallbladder | 7.0 (8.0) | 3.0 (5.0) | <0.0001 | 0.0001 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 9.0 (7.5) | 5.0 (5.0) | <0.0001 | 0.0001 |
Gastric reflux | 2.0 (4.0) | 1.0 (2.0) | 0.0008 | 0.0008 |
Dysbiotic Agents vs. Intensity of: | Correlation | p | FDR p |
---|---|---|---|
Hypoacidity of the stomach | 0.25 | <0.0001 | 0.0001 |
Hypofunction of small intestines and/or pancreas | 0.21 | <0.0001 | 0.0001 |
Ulcers/hyperacidity of the stomach | 0.24 | <0.0001 | 0.0001 |
Colon/large intestine | 0.25 | <0.0001 | 0.0001 |
Liver/gallbladder | 0.23 | <0.0001 | 0.0001 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 0.27 | <0.0001 | 0.0001 |
Gastric reflux | 0.26 | <0.0001 | 0.0001 |
Variable | Median (Q3–Q1) | p | FDR p Value | ||
---|---|---|---|---|---|
Low Priority | Moderate Priority | High Priority | |||
Hypoacidity of the stomach | 9.0 (8.0) | 10. (8.0) | 12.0 (7.0) | <0.0001 | 0.0001 |
Hypofunction of small intestines and/or pancreas | 8.0 (9.0) | 11.0 (7.0) | 11.0 (9.0) | <0.0001 | 0.0001 |
Ulcers/hyperacidity of the stomach | 9.0 (9.0) | 10.0 (7.0) | 15.0 (11.75) | <0.0001 | 0.0001 |
Colon/large intestine | 9.0 (8.0) | 10.0 (8.0) | 12.0 (8.75) | <0.0001 | 0.0001 |
Liver/gallbladder | 8.0 (8.0) | 10.0 (7.0) | 10.0 (9.75) | <0.0001 | 0.0001 |
Gastric reflux | 9.0 (9.0) | 10.0 (9.0) | 11.5 (10.0) | <0.0001 | 0.0001 |
Intestinal permeability/leaky gut syndrome, dysbiosis | 9.0 (9.0) | 10. (9.0) | 20.0 (8.5) | <0.0001 | 0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skonieczna-Żydecka, K.; Stachowska, E.; Maciejewska, D.; Ryterska, K.; Palma, J.; Czerwińska-Rogowska, M.; Kaczmarczyk, M.; Gudan, A.; Mruk, H.; Świniarska, B.; et al. The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2018, 15, 2256. https://doi.org/10.3390/ijerph15102256
Skonieczna-Żydecka K, Stachowska E, Maciejewska D, Ryterska K, Palma J, Czerwińska-Rogowska M, Kaczmarczyk M, Gudan A, Mruk H, Świniarska B, et al. The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey. International Journal of Environmental Research and Public Health. 2018; 15(10):2256. https://doi.org/10.3390/ijerph15102256
Chicago/Turabian StyleSkonieczna-Żydecka, Karolina, Ewa Stachowska, Dominika Maciejewska, Karina Ryterska, Joanna Palma, Maja Czerwińska-Rogowska, Mariusz Kaczmarczyk, Anna Gudan, Honorata Mruk, Barbara Świniarska, and et al. 2018. "The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey" International Journal of Environmental Research and Public Health 15, no. 10: 2256. https://doi.org/10.3390/ijerph15102256
APA StyleSkonieczna-Żydecka, K., Stachowska, E., Maciejewska, D., Ryterska, K., Palma, J., Czerwińska-Rogowska, M., Kaczmarczyk, M., Gudan, A., Mruk, H., Świniarska, B., Kałduńska, J., Stachowska, Z., Mijal, P., Mazur, T., Kupczyński, M., & Marlicz, W. (2018). The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey. International Journal of Environmental Research and Public Health, 15(10), 2256. https://doi.org/10.3390/ijerph15102256