Simulating Cross-Contamination of Cooked Pork with Salmonella enterica from Raw Pork through Home Kitchen Preparation in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Household Survey on Hygiene Management When Cooking Pork
2.2. Preparation of Salmonella Culture
2.3. Pork Preparation
2.4. Inoculation of Pork
2.5. Pork and Equipment Washing
2.6. Sampling
2.7. Design of Cross-Contamination Studies
2.8. Cross-Contamination Scenarios
2.9. Microbiological Tests
2.10. Data Analysis and Modeling
2.11. Ethical Statement
3. Results
3.1. Household Survey
3.2. Effect of Washing Twice on the Prevalence and Salmonella Concentration in Raw Pork
3.3. Cross-Contamination of Equipment and Hands with Salmonella from Raw Pork
3.4. Re-Contamination of Cooked Pork Slices with Salmonella by Equipment and Hands
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grace, D. Food Safety in Low and Middle Income Countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- VFA. Vietnam Food Administration: Report on Food Poisoning Outbreaks in Vietnam. Available online: http://www.vfa.gov.vn/ngo-doc-thuc-pham/bao-cao-vu-ngoc-doc-thuc-pham.html (accessed on 28 December 2017).
- Havelaar, A.H.; Galindo, A.V.; Kurowicka, D.; Cooke, R.M. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog. Dis. 2008, 5, 649–659. [Google Scholar] [CrossRef] [PubMed]
- OECD. Meat Consumption (Indicator). Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 15 November 2017).
- EFSA. Opinion of the Panel on Biological Hazards on a request from the European Commission on a quantitative microbiological risk assessment on Salmonella in meat: Source attribution for human salmonellosis from meat. EFSA J. 2008, 625, 1–32. [Google Scholar]
- Pires, S.M.; Vieira, A.R.; Hald, T.; Cole, D. Source attribution of human salmonellosis: An overview of methods and estimates. Foodborne Pathog. Dis. 2014, 11, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapar, M.; Tiongco, M. Private standards in pork value chains: Role, impact and potential for local innovation to improve food safety and enhance smallholder competitiveness. Farm Policy J. 2011, 8, 39–53. [Google Scholar]
- Wood, R.L.; Pospischil, A.; Rose, R. Distribution of persistent Salmonella Typhimurium infection in internal organs of swine. Am. J. Vet. Res. 1989, 50, 1015–1021. [Google Scholar] [PubMed]
- Boyen, F.; Haesebrouck, F.; Maes, D.; Van Immerseel, F.; Ducatelle, R.; Pasmans, F. Non-typhoidal Salmonella infections in pigs: A closer look at epidemiology, pathogenesis and control. Vet. Microbiol. 2008, 130, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.H.; Callaway, T.R. Pre-harvest risk factors for Salmonella enterica in pork production. Food Res. Int. 2012, 45, 634–640. [Google Scholar] [CrossRef]
- Tran, T.P.; Ly, T.L.; Nguyen, T.T.; Akiba, M.; Ogasawara, N.; Shinoda, D.; Okatani, T.A.; Hayashidani, H. Prevalence of Salmonella spp. in pigs, chickens and ducks in the Mekong Delta, Vietnam. J. Vet. Med. Sci. 2004, 66, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.T.; van Duijkeren, E.; Fluit, A.C.; Heck, M.E.; Verbruggen, A.; Maas, H.M.; Gaastra, W. Distribution of Salmonella enterica serovars from humans, livestock and meat in Vietnam and the dominance of Salmonella Typhimurium phage type 90. Vet. Microbiol. 2006, 113, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Dang-Xuan, S.; Nguyen-Viet, H.; Unger, F.; Pham-Duc, P.; Grace, D.; Tran-Thi, N.; Barot, M.; Pham-Thi, N.; Makita, K. Quantitative risk assessment of human salmonellosis in the smallholder pig value chains in urban of Vietnam. Int. J. Public Health 2017, 62, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Le Bas, C.; Tran, T.H.; Nguyen, T.T.; Dang, D.T.; Ngo, C.T. Prevalence and epidemiology of Salmonella spp. in small pig abattoirs of Hanoi, Vietnam. Ann. N. Y. Acad. Sci. 2006, 1081, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Takeshi, K.; Itoh, S.; Hosono, H.; Kono, H.; Tin, V.T.; Vinh, N.Q.; Thuy, N.T.; Kawamoto, K.; Makino, S. Detection of Salmonella spp. isolates from specimens due to pork production chains in Hue city, Vietnam. J. Vet. Med. Sci. 2009, 71, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Yokozawa, T.; Dang-Xuan, S.; Nguyen-Viet, H.; Lapar, L.; Makita, K. Transition of Salmonella prevalence in pork value chain from pig slaughterhouses to markets in Hung Yen, Vietnam. J. Vet. Epidemiol. 2016, 20, 51–58. [Google Scholar] [CrossRef]
- Phan, T.T.; Khai, L.T.; Ogasawara, N.; Tam, N.T.; Okatani, A.T.; Akiba, M.; Hayashidani, H. Contamination of Salmonella in retail meats and shrimps in the Mekong Delta, Vietnam. J. Food Prot. 2005, 68, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.H.; Hirai, T.; Lan, N.T.; Yamaguchi, R. Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. Int. J. Food Microbiol. 2012, 156, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Den Aantrekker, E.D.; Boom, R.M.; Zwietering, M.H.; Schothorst, M. Quantifying recontamination through factory environments-a review. Int. J. Food Microbiol. 2003, 80, 117–130. [Google Scholar] [CrossRef]
- Redmond, E.C.; Griffith, C.J. Consumer food handling in the home: A review of food safety studies. J. Food Prot. 2003, 66, 130–161. [Google Scholar] [CrossRef] [PubMed]
- Grace, D.; Makita, K.; Kang’ethe, E.K.; Bonfoh, B. Safe Food, Fair Food: Participatory risk analysis for improving the safety of informally produced and marketed food in sub-Saharan Africa. Rev. Africaine Santé Prod. Anim. 2010, 8, 3–11. [Google Scholar]
- Makita, K.; Desissa, F.; Teklu, A.; Zewde, G.; Grace, D. Risk assessment of staphylococcal poisoning due to consumption of informally-marketed milk and home-made yoghurt in Debre Zeit, Ethiopia. Int. J. Food Microbiol. 2012, 153, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.N.; Strojan, C. Risk Assessment: Logic and Measurement, 1st ed.; CRC Press: Chelsea, MI, USA, 1998; ISBN 9781575040486. [Google Scholar]
- Nga, N.T.D.; Huyen, N.T.T.; Hung, P.V.; Ha, D.N.; Long, T.V.; Be, D.T.; Unger, F.; Lapar, L. Household pork consumption behaviour in Vietnam: Implications for pro-smallholder pig value chain upgrading. In Proceedings of the Tropentag 2015 Conference, Berlin, Germany, 16–18 September 2015. [Google Scholar]
- ACIAR. Reducing Disease Risks and Improving Food Safety in Smallholder Pig Value Chains in Vietnam. Available online: http://aciar.gov.au/project/lps/2010/047 (accessed on 15 November 2017).
- Dang-Xuan, S. Quantifying Salmonella spp. in pig slaughterhouses and pork markets associated with human health in Hung Yen, Vietnam. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, September 2013. [Google Scholar]
- Ravishankar, S.; Zhu, L.; Jaroni, D. Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiol. 2010, 27, 791–794. [Google Scholar] [CrossRef] [PubMed]
- ISO-6579. International Standard Organization: Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp.; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- ISO/TS-6579-2. Microbiology of Food and Animal Feed-Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. Part 2: Enumeration by a Miniaturized Most Probable Number Technique; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Cochran, W.G. Estimation of bacterial densities by means of the “most probable number”. Biometrics 1950, 6, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Makita, K.; Mahundi, E.; Toyomaki, H.; Ishihara, K.; Sanka, P.; Kaaya, E.J.; Kurwijila, L.R. Risk assessment of campylobacteriosis due to consumption of roast beef served in beer bars in Arusha, Tanzania. J. Vet. Epidemiol. 2017, 21, 55–64. [Google Scholar] [CrossRef]
- Marie-Laure, D.M.; Christophe, D. Fitdistrplus: An R Package for Fitting Distributions. Available online: https://cran.r-project.org/web/packages/fitdistrplus/vignettes/paper2JSS.pdf (accessed on 15 June 2016).
- Klontz, K.C.; Timbo, B.; Fein, S.; Levy, A. Prevalence of selected food consumption and preparation behaviors associated with increased risks of foodborne disease. J. Food Prot. 1995, 58, 927–930. [Google Scholar] [CrossRef]
- Darcy, H. Part I. Characterization of The Organisms Involved in Foodborne Illness: Nontyphoid Salmonella. In International Handbook of Foodborne Pathogens, 1st ed.; Marianne, D.M., Jeffrey, W.B., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 146–158. ISBN 0-8247-0685-4. [Google Scholar]
- Barakat, S.; Mahmoud, M. Salmonella—A Dangerous Foodborne Pathogen, 1st ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Bloomfield, S.F.; Aiello, A.E.; Cookson, B.; O’Boyle, C.; Larson, E.L. The effectiveness of hand hygiene procedures in reducing the risks of infections in home and community settings including handwashing and alcohol-based hand sanitizers. Am. J. Infect. Control 2007, 35, S27–S64. [Google Scholar] [CrossRef]
- Barker, J.; Naeeni, M.; Bloomfield, S.F. The effects of cleaning and disinfection in reducing Salmonella contamination in a laboratory model kitchen. J. Appl. Microbiol. 2003, 95, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.; Cobb, E.; Donachie, P.; Judah, G.; Curtis, V.; Schmidt, W.P. The effect of handwashing with water or soap on bacterial contamination of hands. Int. J. Environ. Res. Public Health 2011, 8, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Hoque, B.A.; Mahalanabis, D.; Pelto, B.; Alam, M.J. Research methodology for developing efficient handwashing options: An example from Bangladesh. J. Trop. Med. Hyg. 1995, 98, 469–475. [Google Scholar] [PubMed]
- Soares, V.M.; Pereira, J.G.; Viana, C.; Izidoro, T.B.; Bersot, L.S.; Pinto, J.P. Transfer of Salmonella Enteritidis to four types of surfaces after cleaning procedures and cross-contamination to tomatoes. Food Microbiol. 2012, 30, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Omer, M.K.; Hauge, S.J.; Ostensvik, O.; Moen, B.; Alvseike, O.; Rotterud, O.J.; Prieto, M.; Dommersnes, S.; Nesteng, O.H.; Nesbakken, T. Effects of hygienic treatments during slaughtering on microbial dynamics and contamination of sheep meat. Int. J. Food Microbiol. 2015, 2, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Rahman, U.U. Postharvest intervention technologies for safety enhancement of meat and meat based products: A critical review. J. Food Sci. Technol. 2016, 53, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhao, B.X.; Li, T.; Ban, H.Q.; Tian, L.; Ge, Y.L.; Chen, T.Y.; Li, S.Y.; Zhang, L.B. Microbial presence on kitchen dishcloths in Chinese households. Biomed. Environ. Sci. 2014, 27, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.M.; Tiburzi, M.C.; Salsi, M.S.; Moguilevsky, M.A.; Pirovani, M.E. Survival of Salmonella on refrigerated chicken carcasses and subsequent transfer to cutting board. Lett. Appl. Microbiol. 2009, 48, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Lee, J.Y.; Suk, H.J.; Lee, S.; Lee, H.; Lee, S.; Yoon, Y. Modeling to predict growth/no growth boundaries and kinetic behavior of Salmonella on cutting board surfaces. J. Food Prot. 2012, 75, 2116–2121. [Google Scholar] [CrossRef] [PubMed]
- Cliver, D.O. Cutting boards in Salmonella cross-contamination. J. AOAC Int. 2006, 89, 538–542. [Google Scholar] [PubMed]
- Tang, J.Y.; Nishibuchi, M.; Nakaguchi, Y.; Ghazali, F.M.; Saleha, A.A.; Son, R. Transfer of Campylobacter jejuni from raw to cooked chicken via wood and plastic cutting boards. Lett. Appl. Microbiol. 2011, 52, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Langiano, E.; Ferrara, M.; Lanni, L.; Viscardi, V.; Abbatecola, A.M.; De Vito, E. Food safety at home: Knowledge and practices of consumers. Z. Gesundh. Wiss. 2012, 20, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.A.; Friedrich, L.M.; Harris, L.J.; Danyluk, M.D.; Schaffner, D.W. Quantifying transfer rates of Salmonella and Escherichia coli O157:H7 between fresh-cut produce and common kitchen surfaces. J. Food Prot. 2013, 76, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.C.; Schaffner, D.W. Longer contact times increase cross-contamination of Enterobacter aerogenes from surfaces to food. Appl. Environ. Microbiol. 2016, 82, 6490–6496. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.C.; Hillers, V.N.; Kendall, P.A.; Mason, A. Food safety education: What should we be teaching to consumers? J. Nutr. Educ. 2001, 33, 108–113. [Google Scholar] [CrossRef]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Gorman, R.; Bloomfield, S.; Adley, C.C. A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. Int. J. Food Microbiol. 2002, 76, 143–150. [Google Scholar] [CrossRef]
Sampling Points | Sample Type | Data |
---|---|---|
Measuring remaining Salmonella levels after washing contaminated pork | ||
Water used for washing | Water for washing recovered | Qualitative 1 |
Raw pork after being washed twice | Pork piece | MPN 2 |
Testing whether cross-contamination with Salmonella occurs after cutting raw pork | ||
Hands | Surface swab | Qualitative |
Knife | Surface swab | Qualitative |
Cutting board | Surface swab | Qualitative |
Ensuring Salmonella was inactivated | ||
Cooked pork immediately after cooking | Pork piece | Qualitative |
Measuring the level of cross-contamination with Salmonella when handling the cooked pork in different scenarios | ||
Scenario 1: Washing hands, knife and cutting board | ||
Hands before slicing | Surface swab | Qualitative |
Knife before slicing | Surface swab | Qualitative |
Cutting board before slicing | Surface swab | Qualitative |
Pork after slicing | Pork slice | MPN |
Scenario 2: Using a new knife and a new cutting board and washing hands | ||
Hands before slicing | Surface swab | Qualitative |
Pork after slicing | Pork slice | MPN |
Scenario 3: Using a new cutting board, disinfecting hands, and washing knife | ||
Knife before slicing | Surface swab | Qualitative |
Pork after slicing | Pork slice | MPN |
Scenario 4: Using a new knife, disinfecting hands, and washing cutting board | ||
Cutting board before slicing | Surface swab | Qualitative |
Pork after slicing | Pork slice | MPN |
Handling Practices at Households | Hung Yen (n = 208, Frequency, %) | Households in Nghe An (n = 208, Frequency, %) | Overall (n = 416, Frequency, %) |
---|---|---|---|
Use of separate knife and cutting board between raw and cooked pork | |||
Separate knives and separate cutting boards were not used | 141 (67.8) | 156 (75.0) | 297 (71.4) |
Separate knives and separate cutting boards were used | 36 (17.3) | 31 (14.9) | 67 (16.1) |
Separate cutting boards were used, but separate knives were not used | 18 (8.6) | 18 (8.6) | 36 (8.7) |
Separate knives were used, but separate cutting boards were not used | 11 (5.3) | 2 (1.0) | 13 (3.1) |
Answer not provided | 2 (1.0) | 1 (0.5) | 3 (0.7) |
Water temperature for washing hands, knife, cutting board after handling raw pork | |||
Ambient temperature water with dishwashing detergent | 191 (91.8) | 169 (81.2) | 360 (86.5) |
Hot water (40–60 °C) with dishwashing detergent | 15 (7.2) | 39 (18.8) | 54 (13.0) |
Answer not provided | 2 (1.0) | 0 (0.0) | 2 (0.5) |
Scenario | Number of Samples in Salmonella MPN/g 1 Ranges | Mean CFU/g 2 (median) | 95% CI | |||
---|---|---|---|---|---|---|
<0.03 | 0.03–0.30 | 0.31–3.0 | >3.0 | |||
Raw pork after washing twice | 0 | 1 | 8 | 0 | 1.56 (0.44) | 0.03–10.14 |
Cooked pork slice | ||||||
Scenario 1 | 1 | 4 | 1 | 0 | 0.71 (0.12) | 0.00–5.96 |
Scenario 1 3 | 1 | 4 | 1 | 1 | 4.21 (0.16) | 0.00–40.20 |
Scenario 3 | 1 | 1 | 0 | 0 | 0.12 (0.05) | 0.00–0.67 |
Scenario 4 | 0 | 3 | 2 | 0 | 2.49 (0.44) | 0.01–17.78 |
Scenario 4 3 | 0 | 3 | 2 | 1 | 5.79 (0.71) | 0.01–47.06 |
Type of Sample | Samples Cross-Contaminated (n = 9) | Proportion Contaminated (%) | 95% CI |
---|---|---|---|
After raw pork handling | |||
Hands | 7 | 77.8 | 40.2–96.1 |
Knife | 7 | 77.8 | 40.2–96.1 |
Cutting board | 9 | 100 | 62.9–100 |
Wash water | 8 | 88.9 | 50.7–99.4 |
Scenario 1 1 | |||
Cooked pork slice | 7 | 77.8 | 40.2–96.1 |
Hands | 3 | 33.3 | 9.0–69.1 |
Knife | 4 | 44.4 | 15.3–77.3 |
Cutting board | 5 | 55.6 | 22.7–84.7 |
Scenario 2 | |||
Cooked pork slice | 0 | 0.0 | 0.0–37.1 |
Hands | 3 | 33.3 | 9.0–69.1 |
Scenario 3 | |||
Cooked pork slice | 2 | 22.2 | 3.9–59.8 |
Knife | 0 | 0.0 | 0.0–37.1 |
Scenario 4 | |||
Cooked pork slice | 6 | 66.7 | 30.9–90.9 |
Cutting board | 6 | 66.7 | 30.9–90.9 |
Scenario | Mean Reduction Rate (%) | Median (%) | Lower Limit (%) | Upper Limit (%) | Exceeded Initial CFU/g (%) 1 |
---|---|---|---|---|---|
Scenario 1 | 92.7 | 98.8 | 44.9 | 99.9 | 1.0 |
Scenario 1 2 | 57.9 | 98.4 | −308.1 | 99.9 | 8.2 |
Scenario 3 | 98.9 | 99.5 | 93.8 | 99.9 | 0 |
Scenario 4 | 75.1 | 95.6 | −78.0 | 99.9 | 5.2 |
Scenario 4 2 | 42.1 | 92.9 | −372.6 | 99.9 | 13.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang-Xuan, S.; Nguyen-Viet, H.; Pham-Duc, P.; Grace, D.; Unger, F.; Nguyen-Hai, N.; Nguyen-Tien, T.; Makita, K. Simulating Cross-Contamination of Cooked Pork with Salmonella enterica from Raw Pork through Home Kitchen Preparation in Vietnam. Int. J. Environ. Res. Public Health 2018, 15, 2324. https://doi.org/10.3390/ijerph15102324
Dang-Xuan S, Nguyen-Viet H, Pham-Duc P, Grace D, Unger F, Nguyen-Hai N, Nguyen-Tien T, Makita K. Simulating Cross-Contamination of Cooked Pork with Salmonella enterica from Raw Pork through Home Kitchen Preparation in Vietnam. International Journal of Environmental Research and Public Health. 2018; 15(10):2324. https://doi.org/10.3390/ijerph15102324
Chicago/Turabian StyleDang-Xuan, Sinh, Hung Nguyen-Viet, Phuc Pham-Duc, Delia Grace, Fred Unger, Nam Nguyen-Hai, Thanh Nguyen-Tien, and Kohei Makita. 2018. "Simulating Cross-Contamination of Cooked Pork with Salmonella enterica from Raw Pork through Home Kitchen Preparation in Vietnam" International Journal of Environmental Research and Public Health 15, no. 10: 2324. https://doi.org/10.3390/ijerph15102324
APA StyleDang-Xuan, S., Nguyen-Viet, H., Pham-Duc, P., Grace, D., Unger, F., Nguyen-Hai, N., Nguyen-Tien, T., & Makita, K. (2018). Simulating Cross-Contamination of Cooked Pork with Salmonella enterica from Raw Pork through Home Kitchen Preparation in Vietnam. International Journal of Environmental Research and Public Health, 15(10), 2324. https://doi.org/10.3390/ijerph15102324