Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Sample Collection and Experimental Design
2.3. Crude SLs Preparation and Analysis
2.4. Batch Soil Washing Experiments
2.5. Pb and Cd Testing
2.6. Data Analysis
2.7. FT-IR Analysis
3. Results and Discussion
3.1. Comparison of Pb and Cd Removal by Crude Total Sophorolipids and Synthetic Surfactants at Different Concentrations
3.2. Removal Efficiency of Crude Acidic and Lactonic SLs on Cd and Pb
3.3. Effect of Fermentation Broth of S. Bombicola on Heavy Metal Removal
3.4. FT-IR Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmad, E. Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview; Springer: Berlin, Germany, 2012; pp. 1–27. [Google Scholar]
- EPA (The United States Environmental Protection Agency). Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends; EPA 542-R-04-015; US Government Printed Office: Washington, DC, USA, 2004.
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- EPA (The United States Environmental Protection Agency). Best Management Practices (BMPs) for Soils Treatment Technologies; USEPA Rep. 530-R-97-007; US Government Printed Office: Washington, DC, USA, 1997.
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Lafleche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Efligenir, A.; Husson, J.; Persello, J.; Fievet, P.; Fatin-Rouge, N. Extraction of heavy metals from a contaminated soil by reusing chelating agent solutions. J. Environ. Chem. Eng. 2013, 1, 363–368. [Google Scholar] [CrossRef]
- Torres, L.G.; Lopez, R.B.; Beltran, M. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys. Chem. Earth Parts A/B/C 2012, 37–39, 30–36. [Google Scholar] [CrossRef]
- Ehsan, S.; Prasher, S.O.; Marshall, W.D. A washing procedure to mobilize mixed contaminants from soil. J. Environ. Qual. 2006, 35, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Environ. Prog. 1999, 18, 50–54. [Google Scholar] [CrossRef]
- Chen, W.J.; Hsiao, L.C.; Chen, K.Y. Metal desorption from copper(ii)/nickel(ii)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochem. 2008, 43, 488–498. [Google Scholar] [CrossRef]
- Franzetti, A.; Caredda, P.; Ruggeri, C.; Colla, P.L.; Tamburini, E.; Papacchini, M.; Bestetti, G. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 2009, 75, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.P.; Huang, Y.M.; Fan, C.W.; Chen, C.C.; Li, C.Y.; Hsu, C.M.; Chang, Y.F.; Wu, C.I.; Chen, C.Y.; Jean, J.S. Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu, Taiwan. J. Environ. Sci. 2013, 25, 1180–1185. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Nair, A.; Dubey, K.V.; Singh, S.K.; Devotta, S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007, 68, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Schippers, C.; Gessner, K.; Muller, T.; Scheper, T. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J. Biotechnol. 2000, 83, 189–198. [Google Scholar] [CrossRef]
- Kang, S.W.; Kim, Y.B.; Shin, J.D.; Kim, E.K. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl. Biochem. Biotechnol. 2010, 160, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.Y.; Song, X.; Sun, Y.M. Enhanced soil washing of PCB by sophorolipids from transformer oil contaminated soil. Appl. Mech. Mater. 2014, 694, 450–454. [Google Scholar] [CrossRef]
- Van Bogaert, I.A.; Soetaert, W. Sophorolipids. In Biosurfactants; Soberón-Chávez, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 20, pp. 179–210. [Google Scholar]
- Fleurackers, S.J.J. On the use of waste frying oil in the synthesis of sophorolipids. Eur. J. Lipid Sci. Technol. 2010, 108, 5–12. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 2001, 85, 111–125. [Google Scholar] [CrossRef]
- GB 15618-1995. Environmental Quality Standards for Soils; Ministry of Environmental Protection: Beijing, China, 1995. (In Chinese) [Google Scholar]
- Li, J.; Li, H.; Li, W.; Xia, C.; Song, X. Identification and characterization of a flavin-containing monooxygenase MoA and its function in a specific sophorolipid molecule metabolism in Starmerella bombicola. Appl. Microbiol. Biotechnol. 2016, 100, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, X.; Zhang, H.; Qu, Y. Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb. Technol. 2006, 39, 501–506. [Google Scholar] [CrossRef]
- Ma, X.J.; Li, H.; Shao, L.J.; Shen, J.; Song, X. Effects of nitrogen sources on production and composition of sophorolipids by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. Appl. Microbiol. Biotechnol. 2011, 91, 1623–1632. [Google Scholar] [CrossRef] [PubMed]
- EPA (The United States Environmental Protection Agency). Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; Method 3051A; US Government Print Office: Washington, DC, USA, 2007.
- Hong, K.J.; Tokunaga, S.; Kajiuchi, T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 2002, 49, 379–387. [Google Scholar] [CrossRef]
- Hong, K.J.; Choi, Y.K.; Tokunaga, S.; Ishigami, Y.; Kajiuchi, T. Removal of cadmium and lead from soil using aescin as a biosurfactant. J. Surfactants Deterg. 1998, 1, 247–250. [Google Scholar] [CrossRef]
- Serrano, S.; Garrido, F.; Campbell, C.G.; García-González, M.T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 2005, 124, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Doong, R.A.; Wu, Y.W.; Lei, W.G. Surfactant enhanced remediation of cadmium contaminated soils. Water Sci. Technol. 1998, 37, 65–71. [Google Scholar] [CrossRef]
- Torrens, J.L.; Herman, D.C.; Miller-Maier, R.M. Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environ. Sci. Technol. 1998, 32, 776–781. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl. Geochem. 2009, 24, 928–935. [Google Scholar] [CrossRef]
- Gao, L.; Kano, N.; Sato, Y.; Li, C.; Zhang, S.; Imaizumi, H. Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application. Bioinorg. Chem. Appl. 2012, 2012, 173–819. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Wang, K.; Kuo, C.; Chang, C.; Chou, C. Remediation of metal-contaminated soil by an integrated soil washing-electrolysis process. Soil Sediment Contam. Int. J. 2005, 14, 559–569. [Google Scholar] [CrossRef]
- Miller, R.M. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 1995, 103 (Suppl. 1), 59–62. [Google Scholar] [CrossRef]
- Herman, D.C.; Artiola, J.F.; Miller, R.M. Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 1995, 29, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Christofi, N.; Ivshina, I.B. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 2002, 93, 915–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aşçı, Y.; Nurbaş, M.; Açıkel, Y.S. Sorption of Cd(ii) onto kaolin as a soil component and desorption of Cd(ii) from kaolin using rhamnolipid biosurfactant. J. Hazard. Mater. 2007, 139, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Cameotra, S.S. Enhancement of metal bioremediation by use of microbial surfactants. Biochem. Biophys. Res. Commun. 2004, 319, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Açıkel, Y. Use of biosurfactants in the removal of heavy metal ions from soils. In Biomanagement of Metal-Contaminated Soils; Khan, M.S., Zaidi, A., Goel, R., Musarrat, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 20, pp. 183–223. [Google Scholar]
- Kim, J.; Vipulanandan, C. Removal of lead from contaminated water and clay soil using a biosurfactant. J. Environ. Eng. 2006, 132, 777–786. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol. 2009, 100, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhong, H.; Yang, X.; Liu, Y.; Shao, B.; Liu, Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol. Bioeng. 2018, 115, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N. Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci. 2009, 14, 372–378. [Google Scholar] [CrossRef]
- Song, D.; Li, Y.; Liang, S.; Wang, J. Micelle behaviors of sophorolipid/rhamnolipid binary mixed biosurfactant systems. Colloids Surf. A Physicochem. Eng. Aspects 2013, 436, 201–206. [Google Scholar] [CrossRef]
Metal | Biosurfactant 1 | Biosurfactant Concentration | Maximum of Metal Removal (mg) |
---|---|---|---|
Cd | Fermentation broth | 100% | 3.38 ± 0.13 |
Crude total SLs solution | 8% | 2.02 ± 0.04 | |
Crude acidic SLs solution | 8% | 1.45 ± 0.05 | |
Crude lactonic SLs solution | 1% | 0.65 ± 0.15 | |
Pb | Fermentation broth | 100% | 3.45 ± 0.17 |
Crude total SLs solution | 8% | 1.43 ± 0.07 | |
Crude acidic SLs solution | 8% | 1.45 ± 0.09 | |
Crude lactonic SLs solution | 1% | 0.29 ± 0.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Xu, X.; Zhong, C.; Jiang, T.; Wei, W.; Song, X. Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation. Int. J. Environ. Res. Public Health 2018, 15, 2334. https://doi.org/10.3390/ijerph15112334
Qi X, Xu X, Zhong C, Jiang T, Wei W, Song X. Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation. International Journal of Environmental Research and Public Health. 2018; 15(11):2334. https://doi.org/10.3390/ijerph15112334
Chicago/Turabian StyleQi, Xiaoyu, Xiaoming Xu, Chuanqing Zhong, Tianyi Jiang, Wei Wei, and Xin Song. 2018. "Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation" International Journal of Environmental Research and Public Health 15, no. 11: 2334. https://doi.org/10.3390/ijerph15112334
APA StyleQi, X., Xu, X., Zhong, C., Jiang, T., Wei, W., & Song, X. (2018). Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of Starmerella bombicola CGMCC 1576 Fermentation. International Journal of Environmental Research and Public Health, 15(11), 2334. https://doi.org/10.3390/ijerph15112334