Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites Description
2.2. Sample Collection
2.3. Extraction of PAHs
2.4. Analysis of PAHs
2.5. Identification of the Possible Sources of PAH Compounds
2.6. Potential Health Risk Assessment of PAH Compounds
2.6.1. Carcinogenic Potency of PAHs (BaPequi)
2.6.2. Carcinogenic PAHs (CPAHs) Determination
2.6.3. Incremental Lifetime Cancer Risk (ILCR)
3. Results and Discussion
3.1. Concentration of PAH Compounds in Surface Street Dusts
3.2. Profile of PAH Compounds in Surface Street Dust
3.3. Possible Sources of PAH Compounds in Surface Street Dust
3.4. Risk Assessment of PAHs in Surface Street Dust
3.4.1. Carcinogenic PAHs (CPAHs) Determination
3.4.2. Carcinogenic Potency of PAHs Based on BaPequi
3.4.3. Incremental Lifetime Cancer Risk (ILCR)
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgements
Conflicts of Interest
References
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine aerosol. 3. Road dust, tire debris and organometallic brake lining dust: Roads as sources and sinks. Environ. Sci. Technol. 1993, 27, 1892–1904. [Google Scholar] [CrossRef]
- Wang, D.-G.; Yang, M.; Jia, H.-L.; Zhou, L.; Li, Y.-F. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: Comparisons of concentration, profile, and source. Arch. Environ. Contam. Toxicol. 2009, 56, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.C.; Gonzalez, A. Determination of lead, naphthalene, phenanthrene, anthracene and pyrene in street dust. Int. J. Environ. Sci. Technol. 2009, 6, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Cheng, S.B.; Ou, D.N.; Hou, L.J.; Gao, L.; Wang, L.L. Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmos. Environ. 2007, 41, 8785–8795. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Wan, C.; Yue, D.; Ye, D.; Wang, X. Source diagnostics of polycyclic aromatic hydrocarbons in urban road run-off, dust, rain and canopy through fall. Environ. Pollut. 2008, 153, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.T.; Lee, B.K. Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 2009, 74, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.R.; Hegazi, A.H.; El-Gayar, M.S.; Andersson, J.T. Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel 2009, 88, 95–104. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Balachandran, S. Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain. Cities Soc. 2018, 38, 616–626. [Google Scholar] [CrossRef]
- Lorenzi, D.; Entwistle, J.A.; Cave, M.; Dean, J.R. Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere 2011, 83, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Chen, Z.; Bi, C.; Wang, L.; Teng, J.; Li, Y.; Xu, S. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.-J.; Kang, Y.; Wang, H.-S.; Leung, A.O.W.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci.Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Rahman, M.; Prakash, A.; Hoque, R.R. Street dust bound PAHs, carbon and heavy metals in Guwahati city-seasonality: Toxicity and sources. Sustain. Cities Soc. 2015, 19, 17–25. [Google Scholar] [CrossRef]
- Krugly, E.; Martuzevicius, D.; Sidaraviciute, R.; Ciuzas, D.; Prasauskas, T.; Kauneliene, V.; Stasiulaitiene, I.; Kliucininkas, L. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos. Environ. 2014, 82, 298–306. [Google Scholar] [CrossRef]
- Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) in soil—A review. J. Plant Nutr. Soil Sci. 2000, 163, 229–248. [Google Scholar] [CrossRef]
- Choi, S.; Ghim, Y.S.; Lee, J.Y.; Kim, J.Y.; Kim, Y.P. Factors affecting the level and pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period. J. Hazard. Mater. 2012, 227–228, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Bandowe, B.A.M.; Wei, C.; Cao, J.J.; Wilcke, W.; Wang, G.H.; Ni, H.Y.; Jin, Z.D.; An, Z.S.; Yan, B.Z. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 2015, 119, 1335–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NAEI. UK National Atmospheric Emissions Inventory. Available online: http://naei.defra.gov.uk/ (accessed on 10 February 2015).
- Peng, C.; Chen, W.P.; Liao, X.L.; Wang, M.E.; Ouyang, Z.Y.; Jiao, W.T. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Tobacco smoke and involuntary smoking. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; International Agency for Research on Cancer: Lyon, France, 2004. [Google Scholar]
- Straif, K.; Bann, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Cogliano, V.; WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of household solid fuel combustion and of high temperature frying. Lancet Oncol. 2006, 7, 977–978. [Google Scholar] [CrossRef]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res. 2007, 636, 95–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dou, H.; Chang, B.; Wei, Z.; Qiu, W.; Liu, S.; Liu, W.; Tao, S. Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Ann. N.Y. Acad. Sci. 2008, 1140, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.C.; Chang, C.N.; Wu, Y.S.; Fu, P.P.C.; Yang, I.L.; Chen, M.H. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci. Total Environ. 2004, 327, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Bandowe, B.A.M.; Han, Y.; Cao, J.; Zhan, C.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 2015, 134, 512–520. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010. [Google Scholar]
- Piolatto, P.; Catalani, S. The present state of the clinical abd epidemiologic research on chemical and carcinogenic risks in the metalworking industry. G. Ital. Med. Lav. Ergon. 2011, 33, 239–244. [Google Scholar] [PubMed]
- Liu, H.; Yang, H.; Chou, C.; Chen, H. Risk assessment of gaseous/particulate phase PAH exposure in foundry industry. J. Hazard Mater. 2010, 18, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Garattini, S.; Sarnico, M.; Barbieri, P. PAH exposure in asphalt workers. Med. Lav. 2010, 101, 110–117. [Google Scholar] [PubMed]
- Chen, S.; Liao, C. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Kameda, Y.; Shirai, J.; Komai, T.; Nakanishi, J.; Masunaga, S. Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Sci. Total Environ. 2005, 340, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Szabová, E.; Zeljenková, D.; Nescáková, E.; Simko, M.; Turecký, L. Polycyclic aromatic hydrocarbons and occupational risk factor. Reprod. Toxicol. 2008, 26, 74. [Google Scholar] [CrossRef]
- Hensley, A.; Scott, A.; Rosenfeld, P.; Clark, J. Attic dust and human blood samples collected near a former wood treatment facility. Environ. Res. 2007, 105, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, G.; Barregard, L.; Holmberg, E.; Sallsten, G. Cancer incidence in a petrochemical industry area in Sweden. Sci. Total Environ. 2010, 408, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Environmental Health Criteria 202: Selected Non-Heterocyclic Aromatic Hydrocarbons; World Health Organisation: Geneva, Switzerland, 1998. [Google Scholar]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lang cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Perera, F.P.; Rauh, V.; Whyatte, R.M.; Tsai, W.Y.; Bernert, J.T.; Tu, Y.H.; Andrews, H.; Ramirez, J.; Qu, L.R.; Tang, D.L. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ. Health Perspect. 2004, 112, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Malik, R.N.; Martellini, T.; Cincinelli, A. Source, profile, and carcinogenic risk assessment for cohorts occupationally exposed to dust-bound PAHs in Lahore and Rawalpindi cities (Punjab province, Pakistan). Environ. Sci. Pollut. Res. 2015, 22, 10580–10591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obiri, S.; Cobbina, S.J.; Armah, F.A.; Luginaah, I. Assessment of cancer and non-cancer health risks from exposure to PAHs in street dust in the Tamale Metropolis, Ghana. J. Environ. Sci. Health 2013, 48, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.B.; Xie, X.J.; Ma, L.Q.; Kan, H.; Zhou, Q.X. Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ. Sci. Pollut. Res. 2014, 21, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Škrbić, B.; Đurišić-Mladenović, N.; Živančev, J.; Tadić, Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad City, Serbia. Sci. Total Environ. 2019, 647, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Hua, X.; Yves, U.J.; Zhan, H.; Wu, Y. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol. Environ. Saf. 2014, 106, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.-C.; Maciejczyk, P. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.A.; Khoder, M.; Harrison, R.M.; Hyvärinen, A.-P.; Hussein, T.; Al-Jeelani, H.; Abdelmaksoud, A.S.; Goknil, M.H.; Shabbaj, I.I.; Almehmadi, F.M.; et al. Temporal variations of O3 and NOx in the urban background atmosphere of the coastal City Jeddah, Saudi Arabia. Atmos. Environ. 2014, 94, 205–214. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Khoder, M.; Abdelmaksoud, A.S.; Harrison, R.M.; Hussein, T.; Lihavainen, H.; Al-Jeelani1, H.; Goknil, M.H.; Shabbaj, I.I.; Almehmadi, F.M.; et al. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal City Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Shamy, M.; Ana Redal, M.; Khoder, M.; Awad, A.H.; Elserougy, S. Microorganisms associated particulate matter: A preliminary study. Sci. Total Environ. 2014, 479–480, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Alghamdi, M.A.; Khoder, M.; AbdelMaksoud, A.S.; Al-Jeelani, H.; Goknil, M.K.; Shabbaj, I.I.; Almehmadi, F.M.; Hyvärinen, A.; Lihavainen, H.; et al. Particulate matter and number concentrations of particles larger than 0.25 μm in the urban atmosphere of Jeddah, Saudi Arabia. Aerosol Air Qual. Res. 2014, 14, 1383–1391. [Google Scholar] [CrossRef]
- Harrison, R.M.; Bousiotis, D.; Mohorjy, A.M.; Alkhalaf, A.K.; Shamy, M.; Alghamdi, M.; Khoder, M.; Costa, M. Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Sci. Total Environ. 2017, 590–591, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.C.; Thurston, G.D.; Shamy, M.; Alghamdi, M.; Khoder, M.; Mohorjy, A.M.; Al Khalaf, A.K.; Brocato, J.; Chen, L.C.; Costa, M. Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2018, 68, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Alam, M.S.; Dang, J.; Basahi, J.; Alghamdi, M.A.; Ismail, I.M.; Khoder, M.; Hassan, I.A. Influence of petrochemical installations upon PAH concentrations at sites in Western Saudi Arabia. Atmos. Pollut. Res. 2016, 7, 954–960. [Google Scholar] [CrossRef]
- Harrison, R.M.; Alam, M.S.; Dang, J.; Ismail, I.M.; Basahi, J.; Alghamdi, M.A.; Hassan, I.A.; Khoder, M. Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Sci. Total Environ. 2016, 572, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Shabbaj, I.I.; Alghamdi, M.A.; Shamy, M.; Hassan, S.K.; Alsharif, M.M.; Khoder, M.I. Risk Assessment and Implication of Human Exposure to Road Dust Heavy Metals in Jeddah, Saudi Arabia. Int. J. Environ. Res. Public Health 2018, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Method 3540C: Soxhlet Extraction; US Environmental Protection Agency: Washington, DC, USA, 1996.
- Park, J.-S.; Wade, T.L.; Sweet, S. Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos. Environ. 2001, 35, 3241–3249. [Google Scholar] [CrossRef]
- Bucheli, T.D.; Blum, F.; Desaules, A.; Gustafsson, O. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 2004, 56, 1061–1076. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T. Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J. Hazard. Mater. 2009, 171, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, M.; Yunesian, M.; Nabizadeh, R.; Yaghmaeian, K.; Ahmadkhaniha, R.; Rastkari, N.; Parmy, S.; Faridi, S.; Rafiee, A.; Naddafi, K. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran. Environ. Sci. Pollut. Res. 2016, 23, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Wang, Y.X.; Zhang, C.X.; Dong, Y.H.; Du, B.; Liao, X.P. The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, North of China. Ecotoxicology 2014, 23, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Gadi, R.; Mandal, T.K. Levels, sources, and toxic potential of polycyclic aromatic hydrocarbons in urban soil of Delhi, India. Hum. Ecol. Risk Assess. 2012, 18, 393–411. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Fernandes, M.B.; Sicre, M.-A.; Boireau, A.; Tronczynski, J. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its Estuary. Mar. Pollut. Bull. 1997, 34, 857–867. [Google Scholar] [CrossRef]
- Nisbet, C.; LaGoy, P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Human health evaluation manual (Part B, development of risk-based preliminary remediation goals). In Risk Assessment Guidance for Superfund; US Environmental Protection Agency: Washington, DC, USA, 1991. [Google Scholar]
- Wang, Z. Regional Study on Soil Polycyclic Aromatic Hydrocarbons in Liaoning: Patterns, Sources and Cancer Risks. Doctoral Thesis, Dalian University of Technology, Dalian, China, 2007. [Google Scholar]
- Keshavarzi, B.; Sajjad Abbasi, H.; Moore, F.; Delshab, H.; Soltani, N. Polycyclic aromatic hydrocarbons in Street Dust of Bushehr City, Iran: Status, source, and human health risk assessment. Polycycl. Aromat. Compd. 2017. [Google Scholar] [CrossRef]
- Petry, T.; Schmid, P.; Schlatter, C. The use of toxic equivalency factors inassessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 1996, 32, 639–648. [Google Scholar] [CrossRef]
- Pufulete, M.; Battershill, J.; Boobis, A.; Fielder, R. Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: A UK perspective. Regul. Toxicol. Pharmacol. 2004, 40, 54–66. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Overall evaluations of carcinogenicity: An updating of IARC monographs. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1987. [Google Scholar]
- US Environmental Protection Agency (USEPA). Child Specific Exposure Factors Handbook; National Center for Environmental Assessment: Washington, DC, USA, 2002.
- US Environmental Protection Agency (USEPA). Exposure Factors Handbook Edition; National Center for Environmental Assessment: Washington, DC, USA, 2011.
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust: Soil and soak away sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211–212, 8–17. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De-Miguel, E. Geochemistry and risk assessment of street dust in Luanda: Angola. A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Bandowe, B.A.M.; Nkansah, M.A. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 2016, 553, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Sacchi, E.; Lahijanzadeh, A.R.; Eydivand, S.; Jaafarzadeh, N.; Naserian, S.; Setti, M.; Rostami, S. Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, Southwest of Iran. Hum. Ecol. Risk Assess. 2016, 22, 1726–1748. [Google Scholar] [CrossRef]
- Tuyen, L.H.; Tue, N.M.; Takahashi, S.; Suzuki, G.; Viet, P.H.; Subramanian, A.; Bulbule, K.A.; Parthasarathy, P.; Ramanathan, A.; Tanabe, S. Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: Occurence, distribution and in vitro toxicity evaluation. Environ. Pollut. 2014, 194, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Boonyatumanond, R.; Murakami, M.; Wattayakorn, G.; Togo, A.; Takada, H. Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian megacity, Bangkok, Thailand. Sci. Total Environ. 2007, 384, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Pereira Netto, A.D.; Krauss, T.; Cunha, I.; Rego, E. PAHs in SD: Polycyclic aromatic hydrocarbons levels in street dust in the central area of Niterói City, RJ, Brazil. Water Air Soil Pollut. 2006, 176, 57–67. [Google Scholar] [CrossRef]
- Smith, D.J.T.; Edelhauser, E.C.; Harrison, R.M. Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ. Technol. 1995, 16, 45–53. [Google Scholar] [CrossRef]
- Wang, X.S.; Chen, M.Q.; Zheng, X. Polycyclic aromatic hydrocarbons (PAHs) in Xuzhou urban street dust: Concentration and sources. Environ. Earth Sci. 2017, 76, 576. [Google Scholar] [CrossRef]
- Li, Y.; Song, N.; Yu, Y.; Yang, Z.; Shen, Z. Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method. Sci. Total Environ. 2017, 581–582, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Lee, B.K.; Cho, S.W. An analysis on polycyclic aromatic hydrocarbons(PAHs) deposited in road dust at dowtown areas in a city of Korea. Int. Forum Strateg. Technol. 2007. [Google Scholar] [CrossRef]
- Binet, S.; Pfohl-Leszkowicz, A.; Brandt, H.; Lafontaine, M.; Castegnaro, M. Bitumen fumes: review of work on the potential risk to workers and the present knowledge on its origin. Sci. Total Environ. 2002, 300, 37–49. [Google Scholar] [CrossRef]
- Dyke, P.H.; Foan, C.; Fiedler, H. PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere 2003, 50, 469–480. [Google Scholar] [CrossRef]
- Zielinska, B.; Sagebiel, J.; Arnott, W.P.; Rogers, C.F.; Kelly, K.E.; Wagner, D.A.; Lighty, J.S.; Sarofim, A.F.; Palmer, G. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ. Sci. Technol. 2004, 38, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.K., 3rd; Baker, J.E. Source apportionment of Polycyclic Aromatic Hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Dahle, S.; Savinov, V.M.; Matishov, G.G.; Evenset, A.; Næs., K. Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Sci. Total Environ. 2003, 306, 57–71. [Google Scholar] [CrossRef]
- Lee, W.-J.; Wang, Y.-F.; Lin, T.-C.; Chen, Y.-Y.; Lin, W.-C.; Ku, C.-C.; Cheng, J.-J. PAH characteristics in the ambient air of traic-source. Sci. Total Environ. 1995, 159, 185–200. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Michon, Q.; Garrigues, P.; Burgeot, T.; Bellocq, J. Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment. Estuar. Coast. Shelf Sci. 1998, 47, 77–90. [Google Scholar] [CrossRef]
- Caricchia, A.M.; Chiavarini, S.; Pessa, M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos. Environ. 1999, 33, 3731–3738. [Google Scholar] [CrossRef]
- Bourotte, C.; Forti, M.C.; Taniguchi, S.; Caruso, M.; Lotufo, P.A. A wintertime study of PAHs in fine and coarse aerosols in Sao Paulo City, Brazil. Atmos. Environ. 2005, 39, 3799–3811. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, Y.J.; Kang, C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002, 36, 2917–2924. [Google Scholar] [CrossRef]
- Lohmann, R.; Northcott, G.L.; Jones, K.C. Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the U.K. atmosphere. Environ. Sci. Technol. 2000, 34, 2892–2899. [Google Scholar] [CrossRef]
- Ding, X.; Wang, X.M.; Xie, Z.Q.; Xiang, C.H.; Mai, B.X.; Sun, L.G.; Zheng, M.; Sheng, G.Y.; Fu, J.M.; Poschl, U. Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification. Atmos. Environ. 2007, 47, 2061–2072. [Google Scholar] [CrossRef]
- Esteve, W.; Budzinski, H.; Villenave, E. Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1–2 mm calibrated graphite particles. Atmos. Environ. 2004, 38, 6063–6072. [Google Scholar] [CrossRef]
- Mai, B.; Qi, S.; Zeng, E.Y.; Yang, Q.; Zhang, G.; Fu, J.; Sheng, G.; Peng, P.; Wang, Z. Distributionof polycyclicAromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis. Environ. Sci. Technol. 2003, 37, 4855–4863. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Tao, S.; Dawson, R.W.; Xu, F.L. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area. Environ. Res. 2002, 90, 201–206. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Polynuclear aromatic hydrocarbons (PAH). Air Quality Guidelines for Europe; WHO Regional Publications: Geneva, Switzerland, 1987; pp. 105–117. [Google Scholar]
- Lin, T.C.; Chang, F.H.; Hsieh, J.H.; Chao, H.R.; Chao, M.R. Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. J. Hazard. Mater. 2002, 95, 1–12. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Wang, X.T.; Jia, Y.; Wang, F.; Wu, M.H.; Sheng, G.Y.; Fu, J.M. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 2009, 75, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
Exposure Factors | Description | Unit | Adult | Child | Reference |
---|---|---|---|---|---|
IRingestion | Ingestion rate | mg/day | 100 | 200 | USEPA [72] |
SA | Exposed skin area | cm2/day | 5700 | 2800 | USEPA [72] |
Afsoil | Skin adherence factor | mg/cm2 | 0.07 | 0.2 | USEPA [72] |
EF | Exposure frequency | days/year | 365 | 365 | Kumar et al. [73] |
ED | Exposure duration | year | 24 | 6 | USEPA [72] |
BW | Body weight | kg | 70 | 15 | USEPA [65] |
AT | Averaging time (70 years × 365 days/year) | days | 25,550 | 25,550 | Ferreira-Baptista and De-Miguel [74] |
ABS | Dermal adsorption fraction | unitless | 0.13 | 0.13 | USEPA [72] |
IRinhalation | Inhalation rate | m3/day | 20 | 10 | Soltani et al. [41] |
PEF | Particle emission factor | m3/kg | 1.36 × 109 | 1.36 × 109 | USEPA [72] |
CSFingestion | Carcinogenic slope factor for ingestion | mg/kg/day | 7.3 | 7.3 | Peng et al. [20] |
CSFinhalation | Carcinogenic slope factor for inhalation | mg/kg/day | 3.85 | 3.85 | Peng et al. [20] |
CSFdermal | Carcinogenic slope factor for dermal | mg/kg/day | 25 | 25 | Peng et al. [20] |
PAH Compounds | MCRA | REA | TRA | URA | SUA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
NA | 83.88 | 18.44 | 43.44 | 8.87 | 127.32 | 18.83 | 105.60 | 17.23 | 56.16 | 12.35 |
∑2- ring PAH a | 83.88 | 18.44 | 43.44 | 8.87 | 127.32 | 18.83 | 105.60 | 17.23 | 56.16 | 12.35 |
ACY | 81.24 | 20.67 | 40.12 | 9.38 | 121.36 | 19.37 | 101.30 | 16.16 | 63.18 | 13.89 |
ACE | 95.28 | 24.82 | 46.14 | 9.39 | 142.42 | 25.44 | 118.85 | 20.23 | 73.71 | 16.21 |
FLU | 93.60 | 23.28 | 45.80 | 10.33 | 135.4 | 22.23 | 113.00 | 22.25 | 70.20 | 15.44 |
PHE | 129.04 | 32.27 | 63.52 | 11.49 | 196.56 | 33.34 | 163.80 | 30.33 | 100.48 | 21.61 |
ANT | 104.96 | 25.30 | 53.48 | 9.99 | 154.44 | 29.59 | 128.70 | 20.21 | 75.02 | 16.98 |
∑3- ring PAH b | 504.12 | 120.72 | 249.06 | 50.11 | 750.18 | 123.38 | 625.65 | 108.59 | 382.59 | 84.14 |
FLT | 238.88 | 56.83 | 115.44 | 22.77 | 364.32 | 58.77 | 303.60 | 50.34 | 186.16 | 40.06 |
PYR | 167.68 | 38.70 | 87.84 | 16.38 | 245.52 | 38.67 | 204.60 | 37.67 | 118.76 | 27.00 |
BaA | 273.00 | 62.66 | 142.00 | 24.88 | 396.00 | 67.55 | 330.00 | 56.45 | 220.00 | 43.54 |
CRY | 360.60 | 86.73 | 174.80 | 35.19 | 554.40 | 87.34 | 462.00 | 77.65 | 255.20 | 60.96 |
∑4- ring PAH c | 1040.16 | 246.15 | 520.08 | 102.18 | 1560.24 | 251.58 | 1300.20 | 221.42 | 780.12 | 171.56 |
BbF | 410.00 | 95.33 | 205.00 | 38.68 | 615.00 | 95.44 | 512.50 | 89.24 | 307.50 | 67.62 |
BaP | 300.90 | 70.35 | 148.45 | 28.89 | 460.35 | 70.45 | 383.63 | 67.33 | 220.18 | 50.62 |
DBA | 338.58 | 79.39 | 169.29 | 32.13 | 507.87 | 88.56 | 423.23 | 70.40 | 253.94 | 55.84 |
∑5- ring PAH d | 1049.48 | 249.77 | 522.74 | 103.68 | 1583.22 | 255.29 | 1319.35 | 224.68 | 781.61 | 174.08 |
IND | 235.62 | 53.44 | 117.81 | 22.45 | 353.43 | 55.66 | 294.53 | 51.55 | 176.72 | 38.86 |
BGP | 409.92 | 93.88 | 206.96 | 37.49 | 605.88 | 99.29 | 504.90 | 85.67 | 312.94 | 66.62 |
∑6- ring PAH e | 645.54 | 151.34 | 324.77 | 62.82 | 959.31 | 154.68 | 799.43 | 136.14 | 489.66 | 105.48 |
∑PAHs | 3320.18 | 765.92 | 1660.09 | 306.77 | 4980.27 | 498.88 | 4150.23 | 706.76 | 2490.14 | 547.60 |
PAH Compounds | TEF a | MCRA | REA | TRA | URA | SUA | Jeddah City (All Areas) | RUA |
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
NA | 0.001 | 0.07 ± 0.02 | 0.04 ± 0.01 | 0.13 ± 0.02 | 0.11 ± 0.02 | 0.06 ± 0.01 | 0.08 ± 0.02 | 0.002 ± 0.001 |
ACY | 0.001 | 0.08 ± 0.02 | 0.04 ± 0.01 | 0.12 ± 0.02 | 0.10 ± 0.02 | 0.06 ± 0.01 | 0.08 ± 0.02 | 0.003 ± 0.001 |
ACE | 0.001 | 0.10 ± 0.02 | 0.05 ± 0.01 | 0.14 ± 0.03 | 0.12 ± 0.02 | 0.07 ± 0.02 | 0.10 ± 0.02 | 0.003 ± 0.001 |
FLU | 0.001 | 0.09 ± 0.02 | 0.05 ± 0.01 | 0.14 ± 0.02 | 0.11 ± 0.02 | 0.07 ± 0.02 | 0.09 ± 0.02 | 0.002 ± 0.001 |
PHE | 0.001 | 0.13 ± 0.03 | 0.06 ± 0.01 | 0.20 ± 0.03 | 0.16 ± 0.03 | 0.10 ± 0.02 | 0.13 ± 0.03 | 0.005 ± 0.001 |
ANT | 0.010 | 1.05 ± 0.25 | 0.53 ± 0.10 | 1.54 ± 0.30 | 1.29 ± 0.02 | 0.75 ± 0.17 | 1.03 ± 0.21 | 0.036 ± 0.008 |
FLT | 0.001 | 0.24 ± 0.06 | 0.12 ± 0.02 | 0.36 ± 0.06 | 0.30 ± 0.05 | 0.19 ± 0.04 | 0.24 ± 0.05 | 0.005 ± 0.001 |
PYR | 0.001 | 0.17 ± 0.04 | 0.09 ± 0.02 | 0.25 ± 0.04 | 0.20 ± 0.04 | 0.12 ± 0.03 | 0.16 ± 0.03 | 0.005 ± 0.001 |
BaA | 0.100 | 27.3 ± 6.27 | 14.20 ± 2.49 | 39.60 ± 6.76 | 33.00 ± 5.65 | 22.00 ± 4.35 | 27.22 ± 5.41 | 1.020 ± 0.113 |
CRY | 0.010 | 3.61 ± 0.87 | 1.75 ± 0.35 | 5.54 ± 0.87 | 4.62 ± 0.78 | 2.55 ± 0.61 | 3.61 ± 0.73 | 0.335 ± 0.037 |
BbF | 0.100 | 41 ± 9.53 | 20.50 ± 3.87 | 61.50 ± 9.54 | 51.25 ± 8.92 | 30.75 ± 6.76 | 41.00 ± 7.96 | 3.590 ± 0.398 |
BaP | 1.00 | 300.9 ± 70.35 | 148.45 ± 28.89 | 460.35 ± 70.45 | 383.63 ± 67.33 | 220.18 ± 50.65 | 302.70 ± 59.74 | 28.800 ± 3.197 |
DBA | 1.00 | 338.58 ± 79.39 | 169.29 ± 32.13 | 507.87 ± 88.56 | 423.25 ± 70.40 | 253.94 ± 55.84 | 338.58 ± 66.69 | 30.400 ± 3.374 |
IND | 0.100 | 23.56 ± 5.34 | 11.78 ± 2.25 | 35.34 ± 5.57 | 29.45 ± 5.16 | 17.67 ± 3.89 | 23.56 ± 4.57 | 2.250 ± 0.250 |
BGP | 0.010 | 4.10 ± 0.94 | 2.07 ±0.37 | 6.06 ± 0.99 | 5.05 ±0.86 | 3.13 ± 0.67 | 4.08 ± 0.78 | 0.325 ± 0.036 |
Total carcinogenic potency | 740.98 ± 170.93 | 369.02 ± 68.19 | 1119.14 ± 112.11 | 932.62 ±158.82 | 551.63 ± 121.31 | 742.68 ± 134.55 | 66.78 ± 7.419 |
Area | Child | Adult | ||||||
---|---|---|---|---|---|---|---|---|
ILCRingestion | ILCRinhalation | ILCRdermal | Cancer Risk | ILCRingestion | ILCRinhalation | ILCRdermal | Cancer Risk | |
MCRA | 3.7 × 10−6 | 7.2 × 10−11 | 4.61 × 10−6 | 8.3 × 10−6 | 2.65 × 10−6 | 2.05 × 10−10 | 4.71 × 10−6 | 7.35 × 10−6 |
REA | 1.8 × 10−6 | 3.6 × 10−11 | 2.30 × 10−6 | 4.1 × 10−6 | 1.32 × 10−6 | 1.02 × 10−10 | 2.34 × 10−6 | 3.66 × 10−6 |
TRA | 5.6 × 10−6 | 1.1 × 10−10 | 6.96 × 10−6 | 2.6 × 10−5 | 4.00 × 10−6 | 3.10 × 10−10 | 7.11 × 10−6 | 1.11 × 10−5 |
URA | 4.7 × 10−6 | 9.0 × 10−11 | 5.80 × 10−6 | 1.0 × 10−5 | 3.33 × 10−6 | 2.58 × 10−10 | 5.92 × 10−6 | 9.25 × 10−6 |
SUA | 2.8 × 10−6 | 5.4 × 10−11 | 3.43 × 10−6 | 6.2 × 10−6 | 1.97 × 10−6 | 1.53 × 10−10 | 3.50 × 10−6 | 5.47 × 10−6 |
Jeddah city (all areas) | 3.7 × 10−6 | 7.2 × 10−11 | 4.62 × 10−6 | 8.3 × 10−6 | 2.65 × 10−6 | 2.06 × 10−10 | 4.72 × 10−6 | 7.37 × 10−6 |
RUA | 3.3 × 10−7 | 6.5 × 10−12 | 4.15 × 10−7 | 7.5 × 10−7 | 2.38 × 10−7 | 1.85 × 10−11 | 4.24 × 10−7 | 6.62 × 10−7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabbaj, I.I.; Alghamdi, M.A.; Khoder, M.I. Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 2397. https://doi.org/10.3390/ijerph15112397
Shabbaj II, Alghamdi MA, Khoder MI. Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment. International Journal of Environmental Research and Public Health. 2018; 15(11):2397. https://doi.org/10.3390/ijerph15112397
Chicago/Turabian StyleShabbaj, Ibrahim I., Mansour A. Alghamdi, and Mamdouh I. Khoder. 2018. "Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment" International Journal of Environmental Research and Public Health 15, no. 11: 2397. https://doi.org/10.3390/ijerph15112397
APA StyleShabbaj, I. I., Alghamdi, M. A., & Khoder, M. I. (2018). Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment. International Journal of Environmental Research and Public Health, 15(11), 2397. https://doi.org/10.3390/ijerph15112397