Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Surface Meteorological Conditions
2.2. Instruments and Data
2.2.1. Ground-Based
Aethalometer
MICROTOPS (MT) Sunphotometer
2.2.2. Satellite-Based
MODIS
OMI
CALIPSO
3. Results and Discussion
3.1. Temporal Variation of BC880 nm and AOD
3.1.1. Diurnal Variation of BC
3.1.2. Night Time Variation of BC
3.1.3. BC and AOD Comparison
3.1.4. MODIS and MICROTOPS AOD Comparison
3.2. First In-Situ Measurement of BC and AOD in TPPs Vicinity
3.3. Angstrom Exponent and Turbidity Coefficient Variation at the Fixed Site and in Transit Near the TPPs
3.4. Identification of Pollutants by CALIPSO Profile
4. Conclusions
- BC concentration shows a well-defined diurnal variation with two peaks, one in the morning around 06:00–10:00 h and the other in the evening between 17:00 and 22:00 h. In addition, there is a distinct decrease in the early morning hours. Reduction in PBL and wind speed is the causative factors for the accumulation of aerosol particles in the lower layer. Moreover, early morning hours may be characterized by high relative humidity conditions, and hence the accumulated aerosol particles coagulate and become heavier, thereby resulting in a decrease in concentration. The mean concentrations of BC during January and March months at the fixed location are about 23.36 and 7.3 μgm−3, respectively.
- The BC concentration near the power plants was recorded much higher (>200 μgm−3) compared to the observed concentrations at the fixed site (~10 km away from the power plants). The average AOD at the fixed site was 0.43, which shows a reasonably close match with the MODIS derived AOD (0.47). High AOD value of ~1.0 was observed in transit measurement near the power plants for 500 nm wavelength at some places.
- Alpha and Beta variation at the fixed site and in transit along the road shows the dominance of fine particles and high loading of aerosols, while lower values of both the parameters show less polluted and the presence of coarse particles near the forest areas.
- The CALIPSO aerosol sub-types observation clearly shows a dominance of dust particles, polluted dust and smoke vertically over the Singrauli region.
- Depending on weather parameters in the winter months the pollutants diffusion is less and they get suspended near to the surface and that enhances the BC concentration, while in pre-monsoon month (March), the emitted pollutant disperse more in height and distance and thus a low concentration of BC was observed.
- Our preliminary results are limited to only a few days due to various constraints (logistics issue), which clearly show high BC concentrations and high AOD in the Singrauli area. Detailed measurements for a longer period are required to understand the day to day variability of BC and AOD with meteorological parameters and to study the effect of burning of coal in power plants on the BC concentrations and AOD. Long-term observations will be of great help in the model estimation of BC and AOD from coal-fired power plant areas.
- The measurements of BC (within the uncertainties limit) could be helpful in improving the accurate emission inputs in climate models. High atmospheric pollution and poor air quality are a threat to human health in the area.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, C.; Bosch, C.; Kang, S.; Andersson, A.; Chen, P.; Zhang, Q.; Cong, Z.; Chen, B.; Qin, D.; Gustafsson, Ö. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat. Commun. 2016, 7, 12574. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Son, S.-C. Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea. Atmos. Res. 2017, 185, 73–83. [Google Scholar] [CrossRef]
- Vaishya, A.; Singh, P.; Rastogi, S.; Babu, S.S. Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment. Atmos. Res. 2017, 185, 13–21. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, S.; Dumka, U.C.; Kumar, R.; Singh, P.K. Source region and sector contributions of atmospheric soot particle in a coalfield region of Dhanbad, eastern part of India. Atmos. Res. 2017, 197, 415–424. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badarinath, K.V.S.; Kumar Kharol, S.; Rani Sharma, A. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—A study using LIDAR, ground measurements and satellite data. J. Atmos. Sol.-Terr. Phys. 2009, 71, 112–120. [Google Scholar] [CrossRef]
- Kumar, K.R.; Narasimhulu, K.; Balakrishnaiah, G.; Reddy, B.S.K.; Gopal, K.R.; Reddy, R.R.; Satheesh, S.K.; Moorthy, K.K.; Babu, S.S. Characterization of aerosol black carbon over a tropical semi-arid region of Anantapur, India. Atmos. Res. 2011, 100, 12–27. [Google Scholar] [CrossRef]
- Babu, S.S.; Moorthy, K.K. Anthropogenic impact on aerosol black carbon mass concentration at a tropical coastal station: A case study. Curr. Sci. 2001, 81, 1208–1214. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Kalluri, R.O.R.; Gugamsetty, B.; Kotalo, R.G.; Nagireddy, S.K.R.; Tandule, C.R.; Thotli, L.R.; Shaik, N.H.; Maraka, V.R.; Rajuru, R.R.; Surendran Nair, S.B. Seasonal variation of near surface black carbon and satellite derived vertical distribution of aerosols over a semi-arid station in India. Atmos. Res. 2017, 184, 77–87. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef] [Green Version]
- Safai, P.D.; Kewat, S.; Praveen, P.S.; Rao, P.S.P.; Momin, G.A.; Ali, K.; Devara, P.C.S. Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 2007, 41, 2699–2709. [Google Scholar] [CrossRef]
- Rajeevan, K.; Sumesh, R.K.; Resmi, E.A.; Unnikrishnan, C.K. An observational study on the variation of black carbon aerosol and source identification over a tropical station in south India. Atmos. Pollut. Res. 2018. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate effects of black carbon aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.K.; Singh, R.P.; Kafatos, M. Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Singh, R.P.; Kafatos, M. Influence of coal-based thermal power plants on the spatial-temporal variability of tropospheric NO2 column over India. Environ. Monit. Assess. 2012, 184, 1891–1907. [Google Scholar] [CrossRef] [PubMed]
- Ul-Haq, Z.; Tariq, S.; Ali, M.; Mahmood, K.; Batool, S.A.; Rana, A.D. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Pollut. Res. 2014, 5, 709–720. [Google Scholar]
- Ul-Haq, Z.; Tariq, S.; Ali, M. Tropospheric NO2 Trends over South Asia during the Last Decade (2004–2014) Using OMI Data. Adv. Meteorol. 2015, 2015, 1–29. [Google Scholar]
- Guttikunda, S.K.; Jawahar, P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 2014, 92, 449–460. [Google Scholar] [CrossRef]
- Kondo, A.; Shimadera, H.; Chinzaka, M. Impact on air quality by increase in air pollutant emissions from thermal power plants. Int. J. Geomate 2017, 12, 50–56. [Google Scholar] [CrossRef]
- Lu, Z.; Streets, D.G. Increase in NOx Emissions from Indian Thermal Power Plants during 1996–2010: Unit-Based Inventories and Multisatellite Observations. Environ. Sci. Technol. 2012, 46, 7463–7470. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Kant, S.; Panda, J. Long-term study of aerosol—Cloud—Precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theor. Appl. Climatol. 2018. [Google Scholar] [CrossRef]
- Ferrero, L.; Mocnik, G.; Ferrini, B.S.; Perrone, M.G.; Sangiorgi, G.; Sangiorgi, G.; Bolzacchini, E. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci. Total Environ. 2011, 409, 2824–2837. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.K.; Garro, M.A.; Wilcox, E.M.; Moosmüller, H. Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River Valley. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Praveen, P.S.; Ahmed, T.; Kar, A.; Rehman, I.H.; Ramanathan, V. Link between local scale BC emissions in the Indo-Gangetic Plains and large scale atmospheric solar absorption. Atmos. Chem. Phys. 2012, 12, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Kanaya, Y.; Taketani, F.; Komazaki, Y.; Liu, X.; Kondo, Y.; Sahu, L.K.; Irie, H.; Takashima, H. Comparison of black carbon mass concentrations observed by multi-angle absorption photometer (MAAP) and continuous soot-monitoring system (COSMOS) on fukue Island and in Tokyo, Japan. Aerosol Sci. Technol. 2013, 47, 1–10. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Irie, H.; Kanaya, Y.; Akimoto, H.; Tanimoto, H.; Wang, Z.; Gleason, J.F.; Bucsela, E.J. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006. Atmos. Chem. Phys. 2008, 8, 6577–6586. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Rogers, R.R.; Hostetler, C.A.; Hair, J.W.; Ferrare, R.A.; Liu, Z.; Obland, M.D.; Harper, D.B.; Cook, A.L.; Powell, K.A.; Vaughan, M.A.; et al. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar. Atmos. Chem. Phys. 2011, 11, 1295–1311. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Tiwari, S.; Gond, D.P.; Dumka, U.C.; Bisht, D.S.; Tiwari, S.; Pandithurai, G.; Sinha, A. Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmos. Res. 2015, 161–162, 25–35. [Google Scholar] [CrossRef]
- Ran, L.; Deng, Z.; Xu, X.; Yan, P.; Lin, W.; Wang, Y.; Tian, P.; Wang, P.; Pan, W.; Lu, D. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmos. Chem. Phys. 2016, 16, 10441–10454. [Google Scholar] [CrossRef]
- Tiwari, S.; Dumka, U.C.; Hopke, P.K.; Tunved, P.; Srivastava, A.K.; Bisht, D.S.; Chakrabarty, R.K. Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain. Atmos. Res. 2016, 178–179, 393–400. [Google Scholar] [CrossRef]
- Wang, M.; Xu, B.; Wang, N.; Cao, J.; Tie, X.; Wang, H.; Zhu, C.; Yang, W. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau. Sci. Total Environ. 2016, 573, 1041–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simha, C.P.; Devara, P.C.S.; Saha, S.K. Aerosol pollution and its impact on regional climate during Holi festival inferred from ground-based and satellite remote sensing observations. Nat. Hazards 2013, 69, 889–903. [Google Scholar] [CrossRef]
- Moorthy, K.K.; Babu, S.S. Aerosol black carbon over Bay of Bengal observed from an island location, Port Blair: Temporal features and long-range transport. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Beegum, S.N.; Moorthy, K.K.; Babu, S.S.; Satheesh, S.K.; Vinoj, V.; Badarinath, K.V.S.; Safai, P.D.; Devara, P.C.S.; Singh, S.; Vinod; et al. Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos. Environ. 2009, 43, 1071–1078. [Google Scholar] [CrossRef]
- Nakajima, T.; Higurashi, A. A use of two-channel radiances for an aerosol characterization from space. Geophys. Res. Lett. 1998, 25, 3815–3818. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, S.; Kaskaoutis, D.G.; Singh, R.P.; Singh, R.K.; Mishra, A.K.; Srivastava, M.K.; Singh, A.K. Meteorological, atmospheric and climatic perturbations during major dust storms over Indo-Gangetic Basin. Aeolian Res. 2015, 17, 15–31. [Google Scholar] [CrossRef]
Day/Met. Parameters | Temp (°C) | RH (%) | WS (ms−1) | WD (deg.) |
---|---|---|---|---|
12 January | 19.70 | 57.14 | 1.42 | 187.33 |
13 January | 22.95 | 63.67 | 1.20 | 223.59 |
14 January | 23.09 | 65.92 | 0.95 | 177.80 |
25 March | 31.44 | 46.67 | 2.62 | 154.37 |
26 March | 29.40 | 40.00 | 2.99 | 151.18 |
27 March | 30.38 | 36.42 | 1.54 | 137.93 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.P.; Kumar, S.; Singh, A.K. Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data. Int. J. Environ. Res. Public Health 2018, 15, 2472. https://doi.org/10.3390/ijerph15112472
Singh RP, Kumar S, Singh AK. Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data. International Journal of Environmental Research and Public Health. 2018; 15(11):2472. https://doi.org/10.3390/ijerph15112472
Chicago/Turabian StyleSingh, Ramesh P., Sarvan Kumar, and Abhay K. Singh. 2018. "Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data" International Journal of Environmental Research and Public Health 15, no. 11: 2472. https://doi.org/10.3390/ijerph15112472
APA StyleSingh, R. P., Kumar, S., & Singh, A. K. (2018). Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data. International Journal of Environmental Research and Public Health, 15(11), 2472. https://doi.org/10.3390/ijerph15112472