Association between Occupational Dysfunction and Metabolic Syndrome in Community-Dwelling Japanese Adults in a Cross-Sectional Study: Ibara Study
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Participants
2.3. Measurements
2.4. Lifestyle Behavior
2.5. Classification and Assessment of Occupational Dysfunction (CAOD)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koizumi, M.; Ito, H.; Kaneko, Y.; Motohashi, Y. Effect of having a sense of purpose in life on the risk of death from cardiovascular diseases. J. Epidemiol. 2008, 18, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Iso, H.; Ohira, T.; Ikeda, A.; Noda, H.; Honjo, K.; Inoue, M.; Tsugane, S. Perceived level of life enjoyment and risks of cardiovascular disease incidence and mortality: the Japan public health center-based study. Circulation 2009, 120, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Tanno, K.; Sakata, K.; Ohsawa, M.; Onoda, T.; Itai, K.; Yaegashi, Y.; Tamakoshi, A. Associations of ikigai as a positive psychological factor with all-cause mortality and cause-specific mortality among middle-aged and elderly Japanese people: findings from the Japan Collaborative Cohort Study. J. Psychosom. Res. 2009, 67, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Blazer, D.G.; Hybels, C.F. What symptoms of depression predict mortality in community-dwelling elders? J. Am. Geriatr. Soc. 2004, 52, 2052–2056. [Google Scholar] [CrossRef] [PubMed]
- Koivumaa-Honkanen, H.; Honkanen, R.; Viinamaki, H.; Heikkila, K.; Kaprio, J.; Koskenvuo, M. Self-reported life satisfaction and 20-year mortality in healthy Finnish adults. Am. J. Epidemiol. 2000, 152, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.; Schumacher, M.; Herrmann-Lingen, C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom. Med. 2004, 66, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.E.; Nieto, F.J.; Sanford, C.P.; Couper, D.J.; Tyroler, H.A. The association between trait anger and incident stroke risk: the Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2002, 33, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kubzansky, L.D.; Kawachi, I.; Spiro, A., 3rd; Weiss, S.T.; Vokonas, P.S.; Sparrow, D. Is worrying bad for your heart? A prospective study of worry and coronary heart disease in the Normative Aging Study. Circulation 1997, 95, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Everson, S.A.; Goldberg, D.E.; Kaplan, G.A.; Cohen, R.D.; Pukkala, E.; Tuomilehto, J.; Salonen, J.T. Hopelessness and risk of mortality and incidence of myocardial infarction and cancer. Psychosom. Med. 1996, 58, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, M.; Kyougoku, M. Development of the Final Version of the Classification and Assessment of Occupational Dysfunction Scale. PLoS ONE 2015, 10, e0134695. [Google Scholar] [CrossRef] [PubMed]
- Kielhofner, G. Model of Human Occupation: Theory and Application, 2rd ed.; Williams & Wilkins: Baltimore, MD, USA, 1995; ISBN 0683046012. [Google Scholar]
- Kielhofner, G. Conceptual Fundation of Occupational Therapy (2nd ed.); F.A. Davis: Philadelphia, PA, USA, 1997; ISBN 0803602561. [Google Scholar]
- Kielhofner, G.; Braveman, B.; Baron, K.; Fisher, G.; Hammel, J.; Littleton, M. The model of human occupation: understanding the worker who is injured or disabled. Work 1999, 12, 37–45. [Google Scholar] [PubMed]
- World Federation of Occupational Therapists. Available online: http://www.wfot.org/AboutUs/AboutOccupationalTherapy/DefinitionofOccupationalTherapy.aspx (accessed on 29 October 2018).
- Ishii, Y.; Kyougoku, M.; Nagao, S. Occupational Therapy of Mental Health; Chuohoki: Tokyo, Japan, 2010; pp. 50–54. ISBN 978-4-8058-3282-0. [Google Scholar]
- Kyougoku, M. Unstructured Assessment for Occupational Therapy: 4 Condition Method; Seisin-shoboo: Tokyo, Japan, 2010; pp. 32–35. ISBN 978-4-414-80204-7: 2010. [Google Scholar]
- Akiyama, E.; Kyougoku, M. Examination of occupational dysfunction in workers: using occupational self assessment version2 (OSA2). Sogo Rehabil. 2010, 38, 373–379. [Google Scholar]
- Miyake, Y.; Teraoka, M.; Ogino, K.; Kyougoku, M. Survey of the Classification of Occupational Dysfunction among Japanese Rehabilitation Therapists and the Association of Occupational Dysfunction with Job Strain. J. Prevent. Med. 2014, 9, 93–100. [Google Scholar]
- Committee to Evaluate Diagnostic Standards for Metabolic Syndrome. Definition and the diagnostic standard for metabolic syndrome. Nippon Naika Gakkai Zasshi 2005, 94, 794–809. [Google Scholar] [CrossRef]
- Saito, I.; Iso, H.; Kokubo, Y.; Inoue, M.; Tsugane, S. Metabolic syndrome and all-cause and cardiovascular disease mortality: Japan Public Health Center-based Prospective (JPHC) Study. Circ. J. 2009, 73, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, M.; Kyougoku, M.; Nakayama, T.; Nishimoto, Y.; Yamazaki, S.; Nakamura, H. Basic study on Classification and Assessment of Occupational Dysfunction (CAOD). Sogo Rehabil. 2013, 41, 475–479. [Google Scholar]
- Teraoka, M.; Kyougoku, M. Development of occupational–based practice 2.0 that integrates occupation based-practice and dissolution approach for belief conflict. Jpn. Occup. Ther. Res. 2014, 33, 249–258. [Google Scholar] [CrossRef]
- Teraoka, M.; Kyougoku, M. Analysis of structural relationship among the occupational dysfunction on the psychological problem in healthcare workers: a study using structural equation modeling. PeerJ 2015, 3, e1389. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, M.; Kyougoku, M. Application of the classification and assessment of occupational dysfunction (CAOD) scale in preventive occupational therapy: A preliminary study. J. Prevent. Med. 2013, 8, 53–58. [Google Scholar]
- Teraoka, M.; Kyougoku, M. Psychometric properties of Classification and Assessment of Occupational Dysfunction for healthcare professionals. Jpn. Occup. Ther. Res. 2015, 34, 403–413. [Google Scholar]
- Zimmerman, R.S.; Frohlich, E.D. Stress and hypertension. J. Hypertens. Supplement: Official journal of the International Society of Hypertension. 1990, 8, S103–107. [Google Scholar]
- Viinamaki, H.; Heiskanen, T.; Lehto, S.M.; Niskanen, L.; Koivumaa-Honkanen, H.; Tolmunen, T.; Honkalampi, K.; Saharinen, T.; Haatainen, K.; Hintikka, J. Association of depressive symptoms and metabolic syndrome in men. Acta Psychiatr. Scand. 2009, 120, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Raikkonen, K.; Matthews, K.A.; Kuller, L.H. The relationship between psychological risk attributes and the metabolic syndrome in healthy women: antecedent or consequence? Metabolism 2002, 51, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Phillips, A.C.; Thomas, G.N.; Gale, C.R.; Deary, I.; Batty, G.D. Generalized anxiety disorder is associated with metabolic syndrome in the Vietnam experience study. Biol. Psychiatry 2009, 66, 91–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roohafza, H.; Sadeghi, M.; Talaei, M.; Pourmoghaddas, Z.; Sarrafzadegan, N. Psychological status and quality of life in relation to the metabolic syndrome: Isfahan Cohort Study. Int. J. Endocrinol. 2012, 2012, 380902. [Google Scholar] [CrossRef] [PubMed]
- Raikkonen, K.; Matthews, K.A.; Kuller, L.H. Depressive symptoms and stressful life events predict metabolic syndrome among middle-aged women: a comparison of World Health Organization, Adult Treatment Panel III, and International Diabetes Foundation definitions. Diabetes Care 2007, 30, 872–877. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 1514) | ||||||
---|---|---|---|---|---|---|---|
CAOD Score | p | p for Trend | |||||
16–19 | 20–30 | 31≥ | |||||
CAOD median | 16 | 24 | 39 | - | |||
Number | 489 | 516 | 509 | - | |||
Male | 229 | 209 | 220 | - | |||
Female | 260 | 307 | 289 | - | |||
Age (years) | 72.0 | 71.3 | 68.5 | <0.0001 | |||
BMI (kg/m2) | 23.0 | 22.7 | 22.4 | * | 0.007 | 0.002 | |
SBP (mmHg) | 133.3 | 131.9 | 130.5 | * | 0.069 | 0.02 | |
DBP (mmHg) | 72.8 | 71.4 | * | 70.0 | ** | <0.0001 | <0.0001 |
TG (mg/dL) | 114.8 | 114.1 | 111.1 | 0.67 | 0.40 | ||
HDL-C (mg/dL) | 56.4 | 57.3 | 57.7 | 0.303 | 0.13 | ||
LDL-C (mg/dL) | 126.6 | 122.2 | * | 121.4 | ** | 0.011 | 0.005 |
HbA1c (%) | 5.7 | 5.7 | 5.7 | 0.411 | 0.81 | ||
Metabolic syndrome, % | 12.5 | 9.7 | 14.2 | 0.175 | 0.67 | ||
Current Smoker, % | 7.0 | 5.6 | 10.0 | 0.226 | 0.22 | ||
Regular Alcohol intake, % | 20.7 | 20.5 | 21.0 | 0.643 | 0.67 | ||
Exercise habits, % | 54.6 | 53.3 | ** | 44.8 | ** | 0.003 | 0.002 |
Deficiency of sleep, % | 15.1 | 28.9 | ** | 38.9 | ** | 0.003 | <0.0001 |
High school or higher education, % | 74.9 | 76.4 | 77.4 | 0.893 | 0.89 | ||
Marital status (married), % | 75.7 | 76.6 | 75.4 | 0.807 | 0.97 |
Total (n = 1514) | ||||||
---|---|---|---|---|---|---|
CAOD Score | p for Trend | |||||
16–19 | 20–30 | ≥31 | ||||
Number | 489 | 516 | 509 | |||
Total | ||||||
Metabolic syndrome | ||||||
No. | 61 | 50 | 72 | |||
unadjusted OR (95% CI) | 1.00 | 0.75 (0.51–1.12) | 1.16 (0.80–1.67) | 0.24 | ||
Multivariable OR (95% CI) | 1.00 | 0.79 (0.47–1.33) | 1.92 (1.17–3.17) | 0.003 | ||
High blood pressure | ||||||
No. | 319 | 349 | 319 | |||
unadjusted OR (95% CI) | 1.00 | 1.11 (0.86–1.45) | 0.90 (0.69–1.16) | 0.27 | ||
Multivariable OR (95% CI) | 1.00 | 1.20 (0.91–1.58) | 1.12 (0.84–1.48) | 0.58 | ||
Dyslipidemia | ||||||
No. | 201 | 208 | 203 | |||
unadjusted OR (95% CI) | 1.00 | 0.97 (0.75–1.25) | 0.95 (0.74–1.22) | 0.71 | ||
Multivariable OR (95% CI) | 1.00 | 1.01 (0.78–1.30) | 0.99 (0.76–1.30) | 0.92 | ||
Glucose intolerance | ||||||
No. | 120 | 97 | 107 | |||
unadjusted OR (95% CI) | 1.00 | 0.71 (0.53–0.96) | 0.82 (0.61–1.10) | 0.32 | ||
Multivariable OR (95% CI) | 1.00 | 0.75 (0.55–1.03) | 0.98 (0.71–1.34) | 0.88 | ||
BMI < 25 (n = 1179) | ||||||
Metabolic syndrome | ||||||
No. | – | – | – | |||
unadjusted OR (95% CI) | – | – | – | |||
Multivariable OR (95% CI) | – | – | – | |||
High blood pressure | ||||||
No. | 237 | 270 | 238 | |||
unadjusted OR (95% CI) | 1.00 | 1.15 (0.86–1.54) | 0.86 (0.64–1.14) | 0.17 | ||
Multivariable OR (95% CI) | 1.00 | 1.25 (0.92–1.70) | 1.08 (0.79–1.48) | 0.96 | ||
Dyslipidemia | ||||||
No. | 147 | 154 | 136 | |||
unadjusted OR (95% CI) | 1.00 | 0.94 (0.71–1.26) | 0.80 (0.60–1.07) | 0.12 | ||
Multivariable OR (95% CI) | 1.00 | 0.94 (0.70–1.27) | 0.79 (0.57–1.07) | 0.05 | ||
Glucose intolerance | ||||||
No. | 78 | 68 | 65 | |||
unadjusted OR (95% CI) | 1.00 | 0.76 (0.53–1.10) | 0.74 (0.51–1.06) | 0.14 | ||
Multivariable OR (95% CI) | 1.00 | 0.82 (0.57–1.19) | 0.90 (0.61–1.32) | 0.51 | ||
BMI ≥ 25 (n = 335) | ||||||
Metabolic syndrome | ||||||
No. | 61 | 50 | 72 | |||
unadjusted OR (95% CI) | 1.00 | 0.74 (0.44–1.25) | 1.68 (0.98–2.87) | 0.03 | ||
Multivariable OR (95% CI) | 1.00 | 0.85 (0.49–1.47) | 2.07 (1.15–3.71) | 0.01 | ||
High blood pressure | ||||||
No. | 82 | 79 | 81 | |||
unadjusted OR (95% CI) | 1.00 | 1.03 (0.58–1.83) | 1.12 (0.63–2.02) | 0.69 | ||
Multivariable OR (95% CI) | 1.00 | 1.04 (0.57–1.91) | 1.27 (0.68–2.38) | 0.53 | ||
Dyslipidemia | ||||||
No. | 54 | 54 | 67 | |||
unadjusted OR (95% CI) | 1.00 | 1.09 (0.65–1.84) | 1.76 (1.04–2.99) | 0.03 | ||
Multivariable OR (95% CI) | 1.00 | 1.28 (0.74–2.21) | 2.08 (1.17–3.68) | 0.01 | ||
Glucose intolerance | ||||||
No. | 42 | 29 | 42 | |||
unadjusted OR (95% CI) | 1.00 | 0.62 (0.35–1.10) | 1.07 (0.63–1.84) | 0.56 | ||
Multivariable OR (95% CI) | 1.00 | 0.61 (0.34–1.10) | 1.13 (0.64–1.99) | 0.47 | ||
Age < 65 (n = 301) | ||||||
Metabolic syndrome | ||||||
No. | 9 | 11 | 24 | |||
unadjusted OR (95% CI) | 1.00 | 0.98 (0.38–2.53) | 1.40 (0.61–3.20) | 0.32 | ||
Multivariable OR (95% CI) | 1.00 | 1.34 (0.40–4.44) | 2.34 (0.78–7.08) | 0.36 | ||
High blood pressure | ||||||
No. | 33 | 52 | 72 | |||
unadjusted OR (95% CI) | 1.00 | 1.66 (0.89–3.13) | 1.18 (0.67–2.10) | 0.99 | ||
Multivariable OR (95% CI) | 1.00 | 2.28 (1.13–4.60) | 2.02 (1.05–3.89) | 0.34 | ||
Dyslipidemia | ||||||
No. | 29 | 35 | 50 | |||
unadjusted OR (95% CI) | 1.00 | 0.96 (0.51–1.81) | 0.79 (0.44–1.41) | 0.37 | ||
Multivariable OR (95% CI) | 1.00 | 1.10 (0.55–2.18) | 0.76 (0.40–1.47) | 0.17 | ||
Glucose intolerance | ||||||
No. | 18 | 11 | 14 | |||
unadjusted OR (95% CI) | 1.00 | 0.42 (0.18–0.96) | 0.32 (0.15–0.69) | 0.01 | ||
Multivariable OR (95% CI) | 1.00 | 0.51 (0.21–1.25) | 0.39 (0.17–0.92) | 0.02 | ||
Age ≥ 65 (n = 1213) | ||||||
Metabolic syndrome | ||||||
No. | 52 | 39 | 48 | |||
unadjusted OR (95% CI) | 1.00 | 0.71 (0.46–1.10) | 1.06 (0.70–1.61) | 0.59 | ||
Multivariable OR (95% CI) | 1.00 | 0.78 (0.43–1.42) | 1.90 (1.04–3.46) | 0.68 | ||
High blood pressure | ||||||
No. | 286 | 297 | 247 | |||
unadjusted OR (95% CI) | 1.00 | 1.05 (0.78–1.40) | 0.95 (0.70–1.28) | 0.68 | ||
Multivariable OR (95% CI) | 1.00 | 1.08 (0.80–1.45) | 1.00 (0.73–1.37) | 0.68 | ||
Dyslipidemia | ||||||
No. | 172 | 173 | 153 | |||
unadjusted OR (95% CI) | 1.00 | 0.97 (0.74–1.28) | 1.02 (0.77–1.36) | 0.84 | ||
Multivariable OR (95% CI) | 1.00 | 1.00 (0.75–1.32) | 1.07 (0.79–1.45) | 0.97 | ||
Glucose intolerance | ||||||
No. | 102 | 86 | 93 | |||
unadjusted OR (95% CI) | 1.00 | 0.78 (0.56–1.08) | 1.05 (0.76–1.45) | 0.57 | ||
Multivariable OR (95% CI) | 1.00 | 0.81 (0.58–1.13) | 1.17 (0.83–1.65) | 0.46 |
Total (n = 1514) | ||||||
---|---|---|---|---|---|---|
CAOD Score | p for Trend | |||||
16–19 | 20–30 | ≥31 | ||||
Number | 489 | 516 | 509 | |||
Age ≥ 65 years and BMI < 25 (n = 972) | ||||||
Metabolic syndrome | ||||||
No. | – | – | – | |||
unadjusted OR (95% CI) | – | – | – | |||
Multivariable OR (95% CI) | – | – | – | |||
High blood pressure | ||||||
No. | 219 | 238 | 196 | |||
unadjusted OR (95% CI) | 1.00 | 1.09 (0.79–1.50) | 0.94 (0.67–1.31) | 0.62 | ||
Multivariable OR (95% CI) | 1.00 | 1.13 (0.81–1.58) | 1.00 (0.71–1.42) | 0.74 | ||
Dyslipidemia | ||||||
No. | 126 | 133 | 108 | |||
unadjusted OR (95% CI) | 1.00 | 1.00 (0.73–1.36) | 0.90 (0.65–1.25) | 0.51 | ||
Multivariable OR (95% CI) | 1.00 | 0.98 (0.71–1.35) | 0.90 (0.64–1.27) | 0.37 | ||
Glucose intolerance | ||||||
No. | 68 | 63 | 63 | |||
unadjusted OR (95% CI) | 1.00 | 0.85 (0.58–1.24) | 1.02 (0.69–1.50) | 0.81 | ||
Multivariable OR (95% CI) | 1.00 | 0.89 (0.60–1.32) | 1.12 (0.75–1.68) | 0.68 | ||
Age ≥ 65 years and BMI ≥ 25 (n = 241) | ||||||
Metabolic syndrome | ||||||
No. | 52 | 39 | 48 | |||
unadjusted OR (95% CI) | 1.00 | 0.68 (0.37–1.24) | 1.80 (0.92–3.51) | 0.06 | ||
Multivariable OR (95% CI) | 1.00 | 0.72 (0.38–1.35) | 2.01 (0.99–4.06) | 0.04 | ||
High blood pressure | ||||||
No. | 67 | 59 | 51 | |||
unadjusted OR (95% CI) | 1.00 | 0.92 (0.47–1.80) | 1.08 (0.52–2.21) | 0.82 | ||
Multivariable OR (95% CI) | 1.00 | 0.84 (0.41–1.71) | 1.07 (0.50–2.29) | 0.93 | ||
Dyslipidemia | ||||||
No. | 46 | 40 | 45 | |||
unadjusted OR (95% CI) | 1.00 | 0.93 (0.51–1.69) | 1.91 (1.00–3.66) | 0.04 | ||
Multivariable OR (95% CI) | 1.00 | 1.04 (0.56–1.95) | 2.11 (1.06–4.19) | 0.03 | ||
Glucose intolerance | ||||||
No. | 34 | 23 | 30 | |||
unadjusted OR (95% CI) | 1.00 | 0.65 (0.34–1.24) | 1.32 (0.70–2.51) | 0.30 | ||
Multivariable OR (95% CI) | 1.00 | 0.62 (0.32–1.21) | 1.26 (0.64–2.47) | 0.39 | ||
Age < 65 years and BMI < 25 (n = 207) | ||||||
Metabolic syndrome | ||||||
No. | – | – | – | |||
unadjusted OR (95% CI) | – | – | – | |||
Multivariable OR (95% CI) | – | – | – | |||
High blood pressure | ||||||
No. | 18 | 32 | 42 | |||
unadjusted OR (95% CI) | 1.00 | 1.84 (0.85–4.00) | 1.17 (0.57–2.37) | 0.84 | ||
Multivariable OR (95% CI) | 1.00 | 2.49 (1.06–5.84) | 1.87 (0.83–4.22) | 0.50 | ||
Dyslipidemia | ||||||
No. | 21 | 21 | 28 | |||
unadjusted OR (95% CI) | 1.00 | 0.67 (0.31–1.46) | 0.48 (0.23–0.99) | 0.05 | ||
Multivariable OR (95% CI) | 1.00 | 0.67 (0.28–1.58) | 0.35 (0.15–0.82) | 0.007 | ||
Glucose intolerance | ||||||
No. | – | – | – | |||
unadjusted OR (95% CI) | – | – | – | |||
Multivariable OR (95% CI) | – | – | – | |||
Age < 65 years and BMI ≥ 25 (n = 94) | ||||||
Metabolic syndrome | ||||||
No. | 9 | 11 | 24 | |||
unadjusted OR (95% CI) | 1.00 | 1.08 (0.35–3.31) | 2.22 (0.80–6.21) | 0.08 | ||
Multivariable OR (95% CI) | 1.00 | 2.25 (0.57–8.89) | 3.84 (0.91–16.17) | 0.07 | ||
High blood pressure | ||||||
No. | 15 | 20 | 30 | |||
unadjusted OR (95% CI) | 1.00 | 1.50 (0.47–4.81) | 1.50 (0.52–4.35) | 0.54 | ||
Multivariable OR (95% CI) | 1.00 | 1.80 (0.48–6.74) | 2.94 (0.75–11.52) a | 0.15 | ||
Dyslipidemia | ||||||
No. | 8 | 14 | 22 | |||
unadjusted OR (95% CI) | 1.00 | 2.00 (0.65–6.17) | 2.20 (0.78–6.24) | 0.20 | ||
Multivariable OR (95% CI) | 1.00 | 4.31 (1.13–16.5) | 3.11 (0.84–11.48) | 0.17 | ||
Glucose intolerance | ||||||
No. | 8 | 6 | 12 | |||
unadjusted OR (95% CI) | 1.00 | 0.55 (0.16–1.88) | 0.80 (0.27–2.36) | 0.90 | ||
Multivariable OR (95% CI) | 1.00 | 0.70 (0.18–2.74) | 0.61 (0.17–2.22) | 0.49 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyake, Y.; Eguchi, E.; Ito, H.; Nakamura, K.; Ito, T.; Nagaoka, K.; Ogino, N.; Ogino, K. Association between Occupational Dysfunction and Metabolic Syndrome in Community-Dwelling Japanese Adults in a Cross-Sectional Study: Ibara Study. Int. J. Environ. Res. Public Health 2018, 15, 2575. https://doi.org/10.3390/ijerph15112575
Miyake Y, Eguchi E, Ito H, Nakamura K, Ito T, Nagaoka K, Ogino N, Ogino K. Association between Occupational Dysfunction and Metabolic Syndrome in Community-Dwelling Japanese Adults in a Cross-Sectional Study: Ibara Study. International Journal of Environmental Research and Public Health. 2018; 15(11):2575. https://doi.org/10.3390/ijerph15112575
Chicago/Turabian StyleMiyake, Yuki, Eri Eguchi, Hiroshi Ito, Kazufumi Nakamura, Tatsuo Ito, Kenjiro Nagaoka, Noriyoshi Ogino, and Keiki Ogino. 2018. "Association between Occupational Dysfunction and Metabolic Syndrome in Community-Dwelling Japanese Adults in a Cross-Sectional Study: Ibara Study" International Journal of Environmental Research and Public Health 15, no. 11: 2575. https://doi.org/10.3390/ijerph15112575
APA StyleMiyake, Y., Eguchi, E., Ito, H., Nakamura, K., Ito, T., Nagaoka, K., Ogino, N., & Ogino, K. (2018). Association between Occupational Dysfunction and Metabolic Syndrome in Community-Dwelling Japanese Adults in a Cross-Sectional Study: Ibara Study. International Journal of Environmental Research and Public Health, 15(11), 2575. https://doi.org/10.3390/ijerph15112575