The Identification of Scientific Communities and Their Approach to Worldwide Malaria Research
Abstract
:1. Introduction
2. Materials and Methods
- Start Module. Which requires as input the desired search criteria, for example: TITLE (“malaria”) OR AUTHKEY (“malaria”) OR ABS (malaria), once the criteria is selected, the time range of the search is required and a list of SCOPUS apikeys needed to use the Scopus search service (https://dev.elsevier.com/). The output (data files in json format containing the same data as when searching the web, with the difference that one file is obtained for every 25 search results) is the input for the next module of the application. It is worth highlighting the large volume of data files generated for a search criterion such as the one mentioned above.
- Data processing. In this second stage, each one of the results obtained in the previous phase are analyzed, obtaining as output: a single list of the Scopus-ID of authors and a list of the DOIs of the articles.
- Data collection. In this stage, two threads of work are launched in parallel: one that oversees downloading all the information of the authors for each one of the Scopus-ID of the list, generating at least one file per author; and another that will download all the information of the articles for each one of the DOIs of the list of papers. Therefore, a directory for authors and another for articles where all the mentioned information will be stored is obtained as output.
- Establishing relationships. This module, like the previous one, is computationally more expensive and is subdivided in two: one for the analysis of the authors and the other for the analysis of the articles.
- Authors collection. This submodule extracts all relevant information about the authors: H-Index, Name, Affiliation, Nation, etc. On the other hand, collaborations between authors are sought, for this purpose each author is examined, which are their articles, extracting all the authors from the papers of an author, establishing a bidirectional relationship between the author and the co-authors.
- Papers collection. In this thread we obtain information about the articles, Keys, authors, co-authors, references to other papers, etc. For each paper we obtain a unidirectional relationship with the paper that cites, thus generating the network of the graph.
3. Results
3.1. Evolution of Scientific Output
3.2. Authors and Countries in Malaria Research
3.3. Communities Detection
4. Discussion
4.1. Findings
4.2. Limitations
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roberts, L. Malaria wars. Science 2016, 352, 398–405. [Google Scholar] [CrossRef] [PubMed]
- White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet (Lond. Engl.) 2014, 383, 723–735. [Google Scholar] [CrossRef]
- Naing, C.; Whittaker, M.A.; Nyunt Wai, V.; Mak, J.W. Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2014, 8, e3071. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, C.J.; Tanomsing, N.; Nolder, D.; Oguike, M.; Jennison, C.; Pukrittayakamee, S.; Dolecek, C.; Hien, T.T.; Do Rosá Rio, V.E.; Arez, A.P.; et al. Two Nonrecombining Sympatric Forms of the Human Malaria Parasite Plasmodium ovale Occur Globally. J. Infect. Dis. 2010, 201, 1544–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaw, M.T.; Lin, Z. Two sympatric types of Plasmodium ovale and discrimination by molecular methods. J. Microbiol. Immunol. Infect. 2017, 50, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.J.; Hall, N.; Fung, E.; White, O.; Berriman, M.; Hyman, R.W.; Carlton, J.M.; Pain, A.; Nelson, K.E.; Bowman, S.; et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419, 498–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, N.; Karras, M.; Raine, J.D.; Carlton, J.M.; Kooij, T.W.A.; Berriman, M.; Florens, L.; Janssen, C.S.; Pain, A.; Christophides, G.K.; et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 2005, 307, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Cardenas, J.A.; González-Cerón, L.; Manzano-Agugliaro, F.; Mesa-Valle, C. Plasmodium genomics: An approach for learning about and ending human malaria. Parasitol. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, K.; Watanabe, Y.; Kobayashi, F.; Waki, S.; Kita, K.; Tanabe, K. Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitol. Int. 2011, 60, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development. Life Sci. 2016, 158, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, V.S.; Newman, R.D.; Okwo-Bele, J.-M. Malaria Vaccine Funders Group Malaria Vaccine Technology Roadmap. Lancet 2013, 382, 1700–1701. [Google Scholar] [CrossRef]
- Tuju, J.; Kamuyu, G.; Murungi, L.M.; Osier, F.H.A. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017, 152, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, S.J.; Angov, E.; Horii, T.; Miller, L.H.; Srinivasan, P.; Theisen, M.; Biswas, S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015, 33, 7433–7443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, E.J.; Coats, J.R. Current and future repellent technologies: The potential of spatial repellents and their place in mosquito-borne disease control. Int. J. Environ. Res. Public Health 2017, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Communities, modules and large-scale structure in networks. Nat. Phys. 2012, 8, 25–31. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Quiles, M.G.; Macau, E.E.N.; Rubido, N. Dynamical detection of network communities. Sci. Rep. 2016, 6, 25570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Yu, Q.; Fan, Q.; Duan, Z. Research collaboration in health management research communities. BMC Med. Inform. Decis. Mak. 2013, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae research worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Salmeron-Manzano, E.; Manzano-Agugliaro, F. The electric bicycle: Worldwide research trends. Energies 2018, 11, 1894. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Economic analysis of sustainable water use: A review of worldwide research. J. Clean. Prod. 2018, 198, 1120–1132. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Mesa-Valle, C.; Manzano-Agugliaro, F. Human parasitology worldwide research. Parasitology 2018, 145, 699–712. [Google Scholar] [CrossRef] [PubMed]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Dielectric and bioimpedance research studies: A Scientometric approach using the Scopus database. Publications 2018, 6, 6. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Manzano-Agugliaro, F. Worldwide scientific production indexed by Scopus on Labour Relations. Publications 2017, 5, 25. [Google Scholar] [CrossRef]
- Bar-Ilan, J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 2010, 82, 495–506. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, E.; Salinas, M.; Manzano-Agugliaro, F. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 2018, 10, 391. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Manzano-Agugliaro, F. The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study. Sustainability 2018, 10, 4040. [Google Scholar] [CrossRef]
- Gimenez, E.; Manzano-Agugliaro, F. DNA Damage Repair System in Plants: A Worldwide Research Update. Genes 2017, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Escobedo, Q.; Perea-Moreno, A.J.; Manzano-Agugliaro, F. Wind energy research in Mexico. Renew. Energy 2018, 123, 719–729. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Baños, R.; Manzano-Agugliaro, F. A fast method for identifying worldwide scientific collaborations using the Scopus database. Telemat. Inform. 2018, 35, 168–185. [Google Scholar] [CrossRef]
- Loeb, R.F. Activity of a new antimalarial agent, pentaquine (Sn 13,276): Statement approved by the board for coordination of malarial studies. J. Am. Med. Assoc. 1946, 132, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, M.J.; Otieno, P.; Bayoh, N.; Kariuki, S.; Were, V.; Marwanga, D.; Laserson, K.F.; Williamson, J.; Slutsker, L.; Gimnig, J. The combination of indoor residual spraying and insecticide-treated nets provides added protection against malaria compared with insecticide-treated nets alone. Am. J. Trop. Med. Hyg. 2011, 85, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.G.; Kim, D.; Pham, A.; Paul, C.J. A meta-regression analysis of the effectiveness of mosquito nets for malaria control: The value of long-lasting insecticide nets. Int. J. Environ. Res. Public Health 2018, 15, 546. [Google Scholar] [CrossRef] [PubMed]
- Mita, T.; Tanabe, K. Evolution of Plasmodium falciparum drug resistance: Implications for the development and containment of artemisinin resistance. Jpn. J. Infect. Dis. 2012, 65, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Riley, E.M.; Stewart, V.A. Immune mechanisms in malaria: New insights in vaccine development. Nat. Med. 2013, 19, 168–178. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, H.T.U.; Sorgho, H.; Valea, I. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. Lancet 2015, 386, 31–45. [Google Scholar]
- Benelli, G.; Beier, J.C. Current vector control challenges in the fight against malaria. Acta Trop. 2017, 174, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Gold nanoparticles—Against parasites and insect vectors. Acta Trop. 2018, 178, 73–80. [Google Scholar] [CrossRef] [PubMed]
Author | Eigencentrality | Nm | Nt | H-Index | Coauthor | Cites | Country |
---|---|---|---|---|---|---|---|
Marsh K. | 1.000000 | 392 | 468 | 84 | 1748 | 26032 | Kenya |
Djimde A. | 0.995692 | 120 | 123 | 33 | 1052 | 4656 | Mali |
Drakeley C. | 0.965505 | 284 | 294 | 58 | 1781 | 11934 | United Kingdom |
Doumbo O. | 0.957462 | 389 | 424 | 56 | 1921 | 13477 | Mali |
Nosten F. | 0.829049 | 512 | 568 | 78 | 2160 | 23142 | Thailand |
Ouédraogo J. | 0.816295 | 119 | 147 | 29 | 962 | 3137 | Burkina Faso |
Borrmann S. | 0.816208 | 87 | 87 | 31 | 676 | 3818 | Kenya |
Mueller I. | 0.808423 | 276 | 289 | 40 | 1224 | 5830 | Australia |
Price R. | 0.786288 | 227 | 241 | 54 | 1150 | 9966 | United Kingdom |
Hien T. | 0.786204 | 246 | 271 | 70 | 1763 | 19209 | Viet Nam |
Plowe C. | 0.749014 | 179 | 187 | 55 | 1216 | 10896 | United States |
D’Alessandro U. | 0.746263 | 298 | 315 | 43 | 1483 | 7497 | United Kingdom |
White N. | 0.726106 | 897 | 1146 | 114 | 3134 | 52466 | Thailand |
Mayxay M. | 0.703699 | 113 | 117 | 32 | 866 | 3941 | Laos |
Bousema T. | 0.702141 | 136 | 165 | 34 | 827 | 4205 | United Kingdom |
Kwiatkowski D. | 0.690173 | 270 | 335 | 63 | 2069 | 17684 | United Kingdom |
Dondorp A. | 0.685832 | 285 | 312 | 52 | 1367 | 10554 | Netherlands |
Ogutu B. | 0.681686 | 130 | 139 | 27 | 1017 | 3031 | Kenya |
Fanello C. | 0.680121 | 42 | 43 | 21 | 508 | 2648 | Thailand |
Greenwood B. | 0.676612 | 458 | 893 | 77 | 1848 | 23579 | United Kingdom |
Comm. | % | Community Topic | Keyword 1 | Keyword 2 | Keyword 3 | Keyword 4 | Keyword 5 |
---|---|---|---|---|---|---|---|
#1 | 5.64 | Mosquitoes and insecticides | An. gambiae | Anopheles | P. falciparum | Malaria vector | Vector control |
#2 | 5.40 | Drug resistance | P. falciparum | Artemisinin | Chloroquine | Drug resistance | Antimalarial |
#3 | 3.28 | Apicomplexa | P. falciparum | Plasmodium | P. berghei | Apicoplast | Erythrocyte |
#4 | 3.16 | Severe malaria | P. falciparum | Cerebral malaria | Cytokines | Severe malaria | Children |
#5 | 3.13 | Malaria diagnosis | P. falciparum | Diagnosis | Microscopy | Plasmodium | P. vivax |
#6 | 3.05 | Vaccines | P. falciparum | Vaccine | Plasmodium | P. vivax | Malaria vaccine |
#7 | 1.77 | Pregnancy and VIH | Pregnancy | P. falciparum | HIV | Placenta | Anemia |
#8 | 1.44 | Plasmodium vivax | P. vivax | P. falciparum | Primaquine | Chloroquine | Thrombocytopenia |
#9 | 1.35 | Mosquitoes and immunity | Mosquito | P. falciparum | Plasmodium | An. gambiae | Anopheles |
#10 | 1.31 | Travel and drugs | P. falciparum | Mefloquine | Chemoprophylaxis | Travel | Prophylaxis |
#11 | 1.03 | Glucose-6-phosphate dehydrogenase | P. falciparum | G6PD deficiency | Oxidative stress | Thalassemia | Sickle cell disease |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; González-Cerón, L.; Gil-Montoya, F.; Alcayde-Garcia, A.; Novas, N.; Mesa-Valle, C. The Identification of Scientific Communities and Their Approach to Worldwide Malaria Research. Int. J. Environ. Res. Public Health 2018, 15, 2703. https://doi.org/10.3390/ijerph15122703
Garrido-Cardenas JA, Manzano-Agugliaro F, González-Cerón L, Gil-Montoya F, Alcayde-Garcia A, Novas N, Mesa-Valle C. The Identification of Scientific Communities and Their Approach to Worldwide Malaria Research. International Journal of Environmental Research and Public Health. 2018; 15(12):2703. https://doi.org/10.3390/ijerph15122703
Chicago/Turabian StyleGarrido-Cardenas, José Antonio, Francisco Manzano-Agugliaro, Lilia González-Cerón, Francisco Gil-Montoya, Alfredo Alcayde-Garcia, Nuria Novas, and Concepción Mesa-Valle. 2018. "The Identification of Scientific Communities and Their Approach to Worldwide Malaria Research" International Journal of Environmental Research and Public Health 15, no. 12: 2703. https://doi.org/10.3390/ijerph15122703
APA StyleGarrido-Cardenas, J. A., Manzano-Agugliaro, F., González-Cerón, L., Gil-Montoya, F., Alcayde-Garcia, A., Novas, N., & Mesa-Valle, C. (2018). The Identification of Scientific Communities and Their Approach to Worldwide Malaria Research. International Journal of Environmental Research and Public Health, 15(12), 2703. https://doi.org/10.3390/ijerph15122703