An Optimization Model for a Wetland Restoration Project under Uncertainty
Abstract
:1. Introduction
2. Methods
2.1. Definitions for Interval Parameter
2.2. Interval Linear Programs
2.3. Solution of the ILP Model
2.4. Wetland Restoration Optimization Model
3. Case Study
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitsch, W.J.; Mander, Ü. Wetlands and carbon revisited. Ecol. Eng. 2018, 114, 1–6. [Google Scholar] [CrossRef]
- Yu, X.F.; Mingju, E.; Sun, M.Y.; Xue, Z.S.; Lu, X.G.; Jiang, M.; Zou, Y.C. Wetland recreational agriculture: Balancing wetland conservation and agro-development. Environ. Sci. Policy 2018, 87, 11–17. [Google Scholar] [CrossRef]
- Hu, S.J.; Niu, Z.G.; Chen, Y.F.; Li, L.F.; Zhang, H.Y. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Duan, X.; Xue, Z.; Mingju, E.; Sun, M.; Lu, X.; Jiang, M.; Yu, X. Water use conflict between wetland and agriculture. J. Environ. Manag. 2018, 224, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, H.; Bernhard, A.E. Wetl. management using microbial indicators. Wetland Manag. Using Microb. Indic. 2017, 108, 456–476. [Google Scholar] [CrossRef]
- Du, X.; Huang, Z.G. Spatial and temporal effects of urban wetlands on housing prices: Evidence from Hangzhou, China. Land Use Policy 2018, 73, 290–298. [Google Scholar] [CrossRef]
- Li, H.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar]
- McCarthy, M.J.; Radabaugh, K.R.; Moyer, R.P.; Muller-Karger, F.E. Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites. Remote Sens. Environ. 2018, 208, 189–201. [Google Scholar] [CrossRef]
- Kadykalo, A.N.; Findlay, C.S. The flow regulation services of wetlands. Ecosyst. Serv. 2016, 20, 91–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.; Li, Y. An atmospheric vulnerability assessment framework for environment management and protection based on CAMx. J. Environ. Manag. 2018, 207, 341–354. [Google Scholar] [CrossRef]
- Skov, H. UN Convention on Wetlands (RAMSAR): Implications for Human Health. Encycl. Anthropocene 2018, 2, 479–485. [Google Scholar]
- Jiang, W.G.; Lv, J.X.; Wang, C.C.; Chen, Z.; Liu, Y.H. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecol. Indic. 2017, 82, 316–326. [Google Scholar] [CrossRef]
- Zamberletti, P.; Zaffaroni, M.; Accatino, F.; Creed, I.F.; Michele, C.D. Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes. Ecol. Model. 2018, 384, 119–127. [Google Scholar] [CrossRef]
- Luo, J.; Huai, W.X.; Wang, P. Contaminant transport in a three-zone wetland: Dispersion and ecological degradation. J. Hydrol. 2016, 534, 341–351. [Google Scholar] [CrossRef]
- Wondie, A. Ecological conditions and ecosystem services of wetlands in the Lake Tana Area, Ethiopia. Ecohydrol. Hydrobiol. 2018, 18, 231–244. [Google Scholar] [CrossRef]
- Song, C.C.; Wang, L.L.; Guo, Y.D.; Song, Y.Y.; Yang, G.S.; Li, Y.C. Impacts of natural wetland degradation on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China. J. Hydrol. 2011, 398, 26–32. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, G.Q. Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Model. 2011, 222, 293–300. [Google Scholar] [CrossRef]
- Meng, W.Q.; He, M.X.; Hu, B.B.; Mo, X.Q.; Li, H.Y.; Liu, B.Q.; Wang, Z.L. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Kutcher, T.E.; Forrester, G.E. Evaluating how variants of floristic quality assessment indicate wetland condition. J. Environ. Manag. 2018, 217, 231–239. [Google Scholar] [CrossRef]
- Yang, W.J.; You, Q.H.; Fang, N.; Xu, L.T.; Zhou, Y.; Wu, N.X.; Ni, C.Y.; Liu, Y.; Liu, G.H.; Yang, T.; et al. Assessment of wetland health status of Poyang Lake using vegetation-based indices of biotic integrity. Ecol. Indic. 2018, 90, 79–89. [Google Scholar] [CrossRef]
- McInnes, R.J.; Everard, M. Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka. Ecosyst. Serv. 2017, 25, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Langan, C.; Farmer, J.; Rivington, M.; Smith, J.U. Tropical wetland ecosystem service assessments in East Africa; A review of approaches and challenges. Environ. Model. Softw. 2018, 102, 260–273. [Google Scholar] [CrossRef]
- Mulkeen, C.J.; Gibson-Brabazon, S.; Carlin, C.; Williams, C.D.; Healy, M.G.; Mackey, P.; Gormally, M.J. Habitat suitability assessment of constructed wetlands for the smooth newt (Lissotriton vulgaris [Linnaeus, 1758]): A comparison with natural wetlands. Ecol. Eng. 2017, 106, 532–540. [Google Scholar] [CrossRef]
- Xu, X.B.; Jiang, B.; Tan, Y.; Costanza, R.; Yang, G. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosyst. Serv. 2018, 33, 19–28. [Google Scholar] [CrossRef]
- Ouyang, N.L.; Lu, S.L.; Wu, B.F.; Zhu, J.J.; Wang, H. Wetland Restoration Suitability Evaluation at the Watershed Scale—A Case Study in Upstream of the Yongdinghe River. Procedia Environ. Sci. 2011, 10, 1926–1932. [Google Scholar] [CrossRef]
- Kleimeier, C.; Karsten, U.; Lennartz, B. Suitability of degraded peat for constructed wetlands—Hydraulic properties and nutrient flushing. Geoderma 2014, 228, 25–32. [Google Scholar] [CrossRef]
- Vélez, J.M.M.; García, S.B.; Tenorio, A.E. Policies in coastal wetlands: Key challenges. Environ. Sci. Policy 2018, 88, 72–82. [Google Scholar] [CrossRef]
- Horvath, E.K.; Christensen, J.R.; Mehaffey, M.H.; Neale, A.C. Building a potential wetland restoration indicator for the contiguous United States. Ecol. Indic. 2017, 83, 463–473. [Google Scholar] [CrossRef]
- Zhao, C.C.; Xie, H.J.; Xu, J.T.; Zhang, J.; Liang, S.; Hao, J.C.; Ngo, H.H.; Guo, W.S.; Xu, X.L.; Wang, Q.; et al. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan. Sci. Total Environ. 2016, 547, 9–16. [Google Scholar] [CrossRef]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Chi, Y.; Zheng, W.; Shi, H.H.; Sun, J.K.; Fu, Z.Y. Spatial heterogeneity of estuarine wetland ecosystem health influenced by complex natural and anthropogenic factors. Sci. Total Environ. 2018, 634, 1445–1462. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Luo, C.Y.; Zhang, H.Q.; Ni, H.W.; Xu, N. Modeling the wetland restorability based on natural and anthropogenic impacts in Sanjiang Plain, China. Ecol. Indic. 2018, 91, 429–438. [Google Scholar] [CrossRef]
- White, D.; Fennessy, S. Modeling the suitability of wetland restoration potential at the watershed scale. Ecol. Eng. 2005, 24, 359–377. [Google Scholar] [CrossRef]
- Comín, F.A.; Sorando, R.; Ricardoa Darwiche-Criado, N.; García, M.; Masip, A. A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds. Ecol. Eng. 2014, 66, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Ashayerinasab, H.A.; Nehi, H.M.; Allahdadi, M. Solving the interval linear programming problem: A new algorithm for a general case. Expert Syst. Appl. 2018, 93, 39–49. [Google Scholar] [CrossRef]
- Ren, J.Z.; Dong, L.; Sun, L.; Goodsite, M.E.; Tan, S.Y.; Dong, L.C. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming. Bioresour. Technol. 2015, 187, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Hladík, M. Robust optimal solutions in interval linear programming with forall-exists quantifiers. Eur. J. Oper. Res. 2016, 254, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Huang, G.H. Violation analysis on two-step method for interval linear programming. Inf. Sci. 2014, 281, 85–96. [Google Scholar] [CrossRef]
- Boloukat, M.H.S.; Foroud, A.A. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming. Energy 2016, 113, 776–787. [Google Scholar] [CrossRef]
- Li, P.; Chen, B. FSILP: Fuzzy-stochastic-interval linear programming for supporting municipal solid waste management. J. Environ. Manag. 2011, 92, 1198–1209. [Google Scholar] [CrossRef]
- Huang, G.H.; Moore, R.D. Grey linear programming, its solving approach, and its application. Int. J. Syst. Sci. 1993, 24, 159–172. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China City Statistical Yearbooks; China Statistics Press: Beijing, China, 2017.
- Changchun Municipal Bureau of Statistics. National Economy and Society Developed Statistical Bulletins. 2017. Available online: http://tjj.changchun.gov.cn/content.aspx?id=33 (accessed on 29 September 2018).
- Li, B.; Yang, M.; Yin, H. Water Pollution Trend of Boluo Lake Wetland and Its Governance Protective Measures. J. Changchun Univ. Sci. Technol. 2013, 36, 146–149. [Google Scholar]
- Zhang, X.; Yin, H. Cause analysis and prevention measures for ecological degradation of Boluo Lake Wetland. Water Resour. Hydropower Northeast China 2016, 34, 23–25. [Google Scholar]
Restoration Measures | Planting Pattern | Planting Area (km2) |
---|---|---|
Reed (Phragmites karka) | - | 50 |
Populus euphratica, Dryland willow | Mixed forest | 25.45 |
Populus bolleana | Pure forest | 34.55 |
Dryland willow | Pure forest | 40.37 |
Elaeagnus angustifolia | Pure forest | 24.29 |
Restoration Measures | Planting Pattern | Symbol | Planting Area (km2) |
---|---|---|---|
Reed (Phragmites karka) | - | 46.75 | |
Populus euphratica, Dryland willow (P&D) | Mixed forest | [30.54, 37.25] | |
Populus euphratica, Elaeagnus angustifolia (P&E) | Mixed forest | 34.71 | |
Dryland willow | Pure forest | [10.16, 15.97] | |
Populus bolleana | Pure forest | [8.64, 16.48] | |
Elaeagnus angustifolia | Pure forest | 21.36 | |
Total project investment (104 CNY): = [2193.14, 2416.01] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, B.; Zhang, Y.; Wang, X.; Li, Y. An Optimization Model for a Wetland Restoration Project under Uncertainty. Int. J. Environ. Res. Public Health 2018, 15, 2795. https://doi.org/10.3390/ijerph15122795
Cai B, Zhang Y, Wang X, Li Y. An Optimization Model for a Wetland Restoration Project under Uncertainty. International Journal of Environmental Research and Public Health. 2018; 15(12):2795. https://doi.org/10.3390/ijerph15122795
Chicago/Turabian StyleCai, Baofeng, Yang Zhang, Xianen Wang, and Yu Li. 2018. "An Optimization Model for a Wetland Restoration Project under Uncertainty" International Journal of Environmental Research and Public Health 15, no. 12: 2795. https://doi.org/10.3390/ijerph15122795
APA StyleCai, B., Zhang, Y., Wang, X., & Li, Y. (2018). An Optimization Model for a Wetland Restoration Project under Uncertainty. International Journal of Environmental Research and Public Health, 15(12), 2795. https://doi.org/10.3390/ijerph15122795