Profile Resemblance in Health-Related Markers: The Portuguese Sibling Study on Growth, Fitness, Lifestyle, and Health
Abstract
:1. Introduction
1.1. Area of Residence
1.2. Familial Environment
1.3. Clustering
1.4. Profile and Sibling Approach
2. Materials and Methods
2.1. Study Participants
2.2. Health-Related Markers
2.2.1. Body Composition
2.2.2. Physical Fitness
2.2.3. Dietary Intake
2.2.4. Physical Activity
2.2.5. Screen Time
2.3. Biological Maturation
2.4. Sociodemographic Characteristics
2.5. Built Environment
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. A Prioritized Research Agenda for Prevention and Control of Noncommunicable Diseases. Available online: http://www.who.int/cardiovascular_diseases/publications/ncd_agenda2011/en/ (accessed on 10 April 2018).
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- May, A.L.; Kuklina, E.V.; Yoon, P.W. Prevalence of cardiovascular disease risk factors among US adolescents, 1999–2008. Pediatrics 2012, 129, 1035–1041. [Google Scholar] [CrossRef]
- Wiium, N.; Breivik, K.; Wold, B. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood. Int. J. Environ. Res. Public Health 2015, 12, 13711–13729. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, K.; Pereira, G.; Knuiman, M.; Bull, F.; Wood, L.; Christian, H.; Foster, S.; Boruff, B.J.; Beesley, B.; Hickey, S.; et al. The impact of the built environment on health across the life course: Design of a cross-sectional data linkage study. BMJ Open 2013, 3. [Google Scholar] [CrossRef]
- Mitas, J.; Sas-Nowosielski, K.; Groffik, D.; Fromel, K. The Safety of the Neighborhood Environment and Physical Activity in Czech and Polish Adolescents. Int. J. Environ. Res. Public Health 2018, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Conway, T.L.; Cain, K.L.; Carlson, J.A.; Frank, L.D.; Kerr, J.; Glanz, K.; Chapman, J.E.; Saelens, B.E. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev. Med. 2018, 110, 47–54. [Google Scholar] [CrossRef]
- Patnode, C.D.; Lytle, L.A.; Erickson, D.J.; Sirard, J.R.; Barr-Anderson, D.; Story, M. The relative influence of demographic, individual, social, and environmental factors on physical activity among boys and girls. Int J. Behav. Nutr. Phys. Act. 2010, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.L. Making time for family meals: Parental influences, home eating environments, barriers and protective factors. Physiol. Behav. 2018. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Androutsos, O.; Filippou, C.; Van Lippevelde, W.; Vik, F.N.; te Velde, S.J.; Jan, N.; Dossegger, A.; Bere, E.; et al. Family sociodemographic characteristics as correlates of children’s breakfast habits and weight status in eight European countries. The ENERGY (EuropeaN Energy balance Research to prevent excessive weight Gain among Youth) project. Public Health Nutr. 2015, 18, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Gordon-Larsen, P.; North, K.E.; Adair, L.S. Body mass index gain, fast food, and physical activity: Effects of shared environments over time. Obesity 2006, 14, 701–709. [Google Scholar] [CrossRef]
- Fisher, A.; Smith, L.; van Jaarsveld, C.H.; Sawyer, A.; Wardle, J. Are children’s activity levels determined by their genes or environment? A systematic review of twin studies. Prev. Med. Rep. 2015, 2, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.A.; Kibowski, F. Latent Class Analysis and Latent Profile Analysis. In Handbook of Methodological Approaches to Community-Based Research: Qualitative, Quantitative, and Mixed Methods; Jason, L.A., Glenwick, D.S., Eds.; Oxford University Press: New York, NY, USA, 2016; pp. 143–151. [Google Scholar]
- Patnode, C.D.; Lytle, L.A.; Erickson, D.J.; Sirard, J.R.; Barr-Anderson, D.J.; Story, M. Physical activity and sedentary activity patterns among children and adolescents: A latent class analysis approach. J. Phys. Act. Health 2011, 8, 457–467. [Google Scholar] [CrossRef]
- Iannotti, R.J.; Wang, J. Patterns of physical activity, sedentary behavior, and diet in U.S. adolescents. J. Adolesc. Health 2013, 53, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Katzmarzyk, P.T.; Gomes, T.N.; Borges, A.; Santos, D.; Souza, M.; dos Santos, F.K.; Chaves, R.N.; Champagne, C.M.; Barreira, T.V.; et al. Profiling physical activity, diet, screen and sleep habits in Portuguese children. Nutrients 2015, 7, 4345–4362. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Todd Katzmarzyk, P.; Gomes, T.N.; Souza, M.; Chaves, R.N.; Dos Santos, F.K.; Santos, D.; Hedeker, D.; Maia, J. A multilevel analysis of health-related physical fitness. The Portuguese sibling study on growth, fitness, lifestyle and health. PLoS ONE 2017, 12, e0172013. [Google Scholar] [CrossRef]
- Kabiri, L.S.; Hernandez, D.C.; Mitchell, K. Reliability, Validity, and Diagnostic Value of a Pediatric Bioelectrical Impedance Analysis Scale. Child. Obes. 2015, 11, 650–655. [Google Scholar] [CrossRef]
- Safrit, M.J. The Validity and Reliability of Fitness Tests for Children: A Review. Pediatr. Exerc. Sci. 1990, 2, 9–28. [Google Scholar] [CrossRef]
- Currie, C.; Gabhainn, S.N.; Godeau, E.; Roberts, C.; Smith, R.; Currie, D.; Pickett, W.; Richter, M.; Morgan, A.; Barnekow, V. Inequalities in Young People’s Health: HBSC International Report from the 2005/06 Survey: Health Policy for Children and Adolescents; WHO Regional Office for Europe: Copenhagen, Denmark, 2008. [Google Scholar]
- Katzmarzyk, P.T.; Barreira, T.V.; Broyles, S.T.; Champagne, C.M.; Chaput, J.P.; Fogelholm, M.; Hu, G.; Johnson, W.D.; Kuriyan, R.; Kurpad, A.; et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): Design and methods. BMC Public Health 2013, 13, 900. [Google Scholar] [CrossRef]
- Mikkilä, V.; Vepsäläinen, H.; Saloheimo, T.; Gonzalez, S.A.; Meisel, J.D.; Hu, G.; Champagne, C.M.; Chaput, J.P.; Church, T.S.; Katzmarzyk, P.T.; et al. An international comparison of dietary patterns in 9–11-year-old children. Int. J. Obes. Suppl. 2015, 5, S17–S21. [Google Scholar] [CrossRef]
- Baecke, J.A.; Burema, J.; Frijters, J.E. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Philippaerts, R.M.; Westerterp, K.R.; Lefevre, J. Doubly labelled water validation of three physical activity questionnaires. Int. J. Sports Med. 1999, 20, 284–289. [Google Scholar] [CrossRef] [PubMed]
- U.S. Centers for Disease Control and Prevention. Youth Risk Behavior Surveillance System (YRBSS). Available online: http://www.cdc.gov/HealthyYouth/yrbs/ (accessed on 12 July 2018).
- Rey-Lopez, J.P.; Ruiz, J.R.; Vicente-Rodriguez, G.; Gracia-Marco, L.; Manios, Y.; Sjostrom, M.; De Bourdeaudhuij, I.; Moreno, L.A. Physical activity does not attenuate the obesity risk of TV viewing in youth. Pediatr. Obes. 2012, 7, 240–250. [Google Scholar] [CrossRef]
- Rey-Lopez, J.P.; Tomas, C.; Vicente-Rodriguez, G.; Gracia-Marco, L.; Jimenez-Pavon, D.; Perez-Llamas, F.; Redondo, C.; Bourdeaudhuij, I.D.; Sjostrom, M.; Marcos, A.; et al. Sedentary behaviours and socio-economic status in Spanish adolescents: The AVENA study. Eur. J. Public Health 2011, 21, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Arango, C.M.; Parra, D.C.; Gómez, L.F.; Lema, L.; Lobelo, F.; Ekelund, U. Screen time, cardiorespiratory fitness and adiposity among school-age children from Monteria, Colombia. J. Sci. Med. Sport 2014, 17, 491–495. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Morrissey, J.L.; Janz, K.F.; Letuchy, E.M.; Francis, S.L.; Levy, S.M. The effect of family and friend support on physical activity through adolescence: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.S.L.; Fragoso, M.I.; Teles, J. Physical Activity-Related Injury Profile in Children and Adolescents According to Their Age, Maturation, and Level of Sports Participation. Sports Health 2017, 9, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Alexander, A.; Bergman, P.; Hagströmer, M.; Sjöström, M. IPAQ environmental module; reliability testing. J. Public Health 2006, 14, 76. [Google Scholar] [CrossRef]
- Delgado, N. Relaçao Entre IMC, Actividade Física e as Caracteristicas do Envolvimento: Um Estudo na População Escolar Adolescente do Concelho de Ílhavo; Faculdade de Desporto da Universidade do Porto: Porto, Portugal, 2005. [Google Scholar]
- Hart, S.A.; Logan, J.A.; Thompson, L.; Kovas, Y.; McLoughlin, G.; Petrill, S.A. A latent profile analysis of math achievement, numerosity, and math anxiety in twins. J. Educ. Psychol. 2016, 108, 181–193. [Google Scholar] [CrossRef]
- Cabanas-Sanchez, V.; Martinez-Gomez, D.; Izquierdo-Gomez, R.; Segura-Jimenez, V.; Castro-Pinero, J.; Veiga, O.L. Association between Clustering of Lifestyle Behaviors and Health-Related Physical Fitness in Youth: The UP&DOWN Study. J. Pediatr. 2018, 199, 41–48. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2012. [Google Scholar]
- Wang, J.; Wang, X. Structural Equation Modeling: Applications Using Mplus; Wiley: Chichester, UK, 2012. [Google Scholar]
- Geiser, C. Data Analysis with Mplus; The Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An introduction to Basic and Advanced Multilevel Modeling; Sage Publications: London, UK, 2012. [Google Scholar]
- Fernandez-Alvira, J.M.; De Bourdeaudhuij, I.; Singh, A.S.; Vik, F.N.; Manios, Y.; Kovacs, E.; Jan, N.; Brug, J.; Moreno, L.A. Clustering of energy balance-related behaviors and parental education in European children: The ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 5. [Google Scholar] [CrossRef]
- Tabacchi, G.; Faigenbaum, A.; Jemni, M.; Thomas, E. Profiles of Physical Fitness Risk Behaviours in School Adolescents from the ASSO Project: A Latent Class Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1933. [Google Scholar] [CrossRef]
- Hartz, J.; Yingling, L.; Ayers, C.; Adu-Brimpong, J.; Rivers, J.; Ahuja, C.; Powell-Wiley, T.M. Clustering of Health Behaviors and Cardiorespiratory Fitness Among U.S. Adolescents. J. Adolesx. Health 2018, 62, 583–590. [Google Scholar] [CrossRef]
- Garcia-Pastor, T.; Salinero, J.J.; Sanz-Frias, D.; Pertusa, G.; Del Coso, J. Body fat percentage is more associated with low physical fitness than with sedentarism and diet in male and female adolescents. Physiol. Behav. 2016, 165, 166–172. [Google Scholar] [CrossRef]
- Artero, E.G.; Espana-Romero, V.; Jimenez-Pavon, D.; Martinez-Gomez, D.; Warnberg, J.; Gomez-Martinez, S.; Gonzalez-Gross, M.; Vanhelst, J.; Kafatos, A.; Molnar, D.; et al. Muscular fitness, fatness and inflammatory biomarkers in adolescents. Pediatr. Obes. 2014, 9, 391–400. [Google Scholar] [CrossRef]
- Sallis, J.F.; Glanz, K. The role of built environments in physical activity, eating, and obesity in childhood. Futur. Child. 2006, 16, 89–108. [Google Scholar] [CrossRef]
- Collins, P.; Al-Nakeeb, Y.; Nevill, A.; Lyons, M. The impact of the built environment on young people’s physical activity patterns: A suburban-rural comparison using GPS. Int. J. Environ. Res. Public Health 2012, 9, 3030–3050. [Google Scholar] [CrossRef]
- Masoumi, H.E. Associations of built environment and children’s physical activity: A narrative review. Rev. Environ. Health 2017, 32, 315–331. [Google Scholar] [CrossRef]
- Vanhelst, J.; Beghin, L.; Salleron, J.; Ruiz, J.R.; Ortega, F.B.; De Bourdeaudhuij, I.; Molnar, D.; Manios, Y.; Widhalm, K.; Vicente-Rodriguez, G.; et al. A favorable built environment is associated with better physical fitness in European adolescents. Prev. Med. 2013, 57, 844–849. [Google Scholar] [CrossRef]
- McDonald, K.; Hearst, M.; Farbakhsh, K.; Patnode, C.; Forsyth, A.; Sirard, J.; Lytle, L. Adolescent physical activity and the built environment: A latent class analysis approach. Health Place 2012, 18, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Gebel, K. Built environment, physical activity, and obesity: What have we learned from reviewing the literature? Health Place 2012, 18, 100–105. [Google Scholar] [CrossRef]
- Ottevaere, C.; Huybrechts, I.; Benser, J.; De Bourdeaudhuij, I.; Cuenca-Garcia, M.; Dallongeville, J.; Zaccaria, M.; Gottrand, F.; Kersting, M.; Rey-Lopez, J.P.; et al. Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health 2011, 11, 328. [Google Scholar] [CrossRef]
- Liu, J.; Kim, J.; Colabianchi, N.; Ortaglia, A.; Pate, R.R. Co-varying patterns of physical activity and sedentary behaviors and their long-term maintenance among adolescents. J. Phys. Act. Health 2010, 7, 465–474. [Google Scholar] [CrossRef]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Community Health 2006, 60, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Niermann, C.Y.N.; Spengler, S.; Gubbels, J.S. Physical Activity, Screen Time, and Dietary Intake in Families: A Cluster-Analysis with Mother-Father-Child Triads. Front. Public Health 2018, 6, 276. [Google Scholar] [CrossRef]
- Malina, R.M.; Mueller, W.H. Genetic and environmental influences on the strength and motor performance of Philadelphia school children. Hum. Biol. 1981, 53, 163–179. [Google Scholar]
- Pawlak, K. Heritability of strength and speed: Methods of testing and evaluation. In Genetics of Psychomotor Traits in Man; Wolanski, N., Siniarski, A., Eds.; College of Physical Education: Warsaw, Poland, 1984. [Google Scholar]
- Seabra, A.F.; Mendonca, D.M.; Goring, H.H.; Thomis, M.A.; Maia, J.A. Genetic and environmental factors in familial clustering in physical activity. Eur. J. Epidemiol. 2008, 23, 205–211. [Google Scholar] [CrossRef]
- Jacobi, D.; Caille, A.; Borys, J.M.; Lommez, A.; Couet, C.; Charles, M.A.; Oppert, J.M. Parent-offspring correlations in pedometer-assessed physical activity. PLoS ONE 2011, 6, e29195. [Google Scholar] [CrossRef]
- Pereira, S.; Katzmarzyk, P.T.; Gomes, T.N.; Souza, M.; Chaves, R.N.; Santos, F.K.; Santos, D.; Bustamante, A.; Barreira, T.V.; Hedeker, D.; et al. Resemblance in physical activity levels: The Portuguese sibling study on growth, fitness, lifestyle, and health. Am. J. Hum. Biol. 2018, 30. [Google Scholar] [CrossRef]
- Feng, Y.; Zang, T.; Xu, X.; Xu, X. Familial aggregation of metabolic syndrome and its components in a large Chinese population. Obesity 2008, 16, 125–129. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Malina, R.M.; Perusse, L.; Rice, T.; Province, M.A.; Rao, D.C.; Bouchard, C. Familial resemblance in fatness and fat distribution. Am. J. Hum. Biol. 2000, 12, 395–404. [Google Scholar] [CrossRef]
- Bogl, L.H.; Silventoinen, K.; Hebestreit, A.; Intemann, T.; Williams, G.; Michels, N.; Molnar, D.; Page, A.S.; Pala, V.; Papoutsou, S.; et al. Familial Resemblance in Dietary Intakes of Children, Adolescents, and Parents: Does Dietary Quality Play a Role? Nutrients 2017, 9, 892. [Google Scholar] [CrossRef]
- Lightfoot, J.T. Current understanding of the genetic basis for physical activity. J. Nutr. 2011, 141, 526–530. [Google Scholar] [CrossRef]
- de Vilhena e Santos, D.M.; Katzmarzyk, P.T.; Seabra, A.F.; Maia, J.A. Genetics of physical activity and physical inactivity in humans. Behav. Genet. 2012, 42, 559–578. [Google Scholar] [CrossRef]
- Lu, Y.; Day, F.R. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat. Commun. 2016, 7, 10495. [Google Scholar] [CrossRef] [Green Version]
- Willems, S.M.; Wright, D.J. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017, 8, 16015. [Google Scholar] [CrossRef] [Green Version]
- Schnurr, T.M.; Gjesing, A.P.; Sandholt, C.H.; Jonsson, A.; Mahendran, Y.; Have, C.T.; Ekstrøm, C.T.; Bjerregaard, A.-L.; Brage, S.; Witte, D.R.; et al. Genetic Correlation between Body Fat Percentage and Cardiorespiratory Fitness Suggests Common Genetic Etiology. PLoS ONE 2016, 11, e0166738. [Google Scholar] [CrossRef]
- Santos, D.M.; Katzmarzyk, P.T.; Diego, V.P.; Blangero, J.; Souza, M.C.; Freitas, D.L.; Chaves, R.N.; Gomes, T.N.; Santos, F.K.; Maia, J.A. Genotype by sex and genotype by age interactions with sedentary behavior: The Portuguese Healthy Family Study. PLoS ONE 2014, 9, e110025. [Google Scholar] [CrossRef]
- Ambrosini, G.L.; de Klerk, N.H.; O’Sullivan, T.A.; Beilin, L.J.; Oddy, W.H. The reliability of a food frequency questionnaire for use among adolescents. Eur. J. Clin. Nutr. 2009, 63, 1251. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Harnack, L.; Fulton, J.E.; Jacobs, D.R., Jr.; Gao, S.; Lytle, L.A.; Van Coevering, P. Reliability and validity of a brief questionnaire to assess television viewing and computer use by middle school children. J. Sch. Health 2004, 74, 370–377. [Google Scholar] [CrossRef]
Brother-Brother (n = 200) | Sister-Sister (n = 167) | Brother-Sister (n = 369) | All Sibs | |
---|---|---|---|---|
Variables | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
Biological characteristics | ||||
Chronological age (years) | 13.1 ± 1.8 | 12.6 ± 1.6 | 12.9 ± 1.7 | 12.9 ± 1.7 |
Biological Maturation (years) | −0.14 ± 1.9 | −0.33 ± 1.3 | −0.24 ± 1.6 | −0.23 ± 1.6 |
Body composition | ||||
Body fat (%) | 20.0 ± 6.4 | 25.8 ± 5.6 | 23.2 ± 6.6 | 22.9 ± 6.7 |
Physical fitness | ||||
Handgrip strength (kgf) * | 27.0 ± 9.2 | 22.0 ± 5.5 | 23.9 ± 7.3 | 24.3 ± 7.7 |
Standing long jump (cm) | 162.4 ± 31.6 | 133.7 ± 28.3 | 151.5 ± 31.1 | 150.4 ± 32.3 |
1-mile run/walk (min) | 8.6 ± 2.0 | 10.2 ± 2.2 | 9.2 ± 2.2 | 9.3 ± 2.2 |
Shuttle-run (s) | 11.2 ± 1.8 | 12.2 ± 2.1 | 11.4 ± 1.9 | 11.5 ± 1.9 |
Lifestyle behaviors | ||||
Total physical activity | 8.4 ± 1.5 | 7.7 ± 1.3 | 8.1 ± 1.5 | 8.1 ± 1.5 |
Screen time | 3.6 ± 2.5 | 2.9 ± 2.1 | 3.4 ± 2.2 | 3.3 ± 2.3 |
Unhealthy diet | 31.5 ± 16.0 | 23.9 ± 11.5 | 28.6 ± 14.6 | 28.3 ± 14.6 |
Healthy diet | 57.6 ± 16.3 | 57.0 ± 15.0 | 57.8 ± 14.4 | 57.6 ± 15.1 |
Sociodemographic characteristics | ||||
Occupation | ||||
Mother | 5.9 ± 2.4 | 6.1 ± 2.7 | 5.2 ± 2.7 | 5.6 ± 2.5 |
Father | 5.9 ± 2.4 | 6.1 ± 2.4 | 5.4 ± 2.4 | 5.7 ± 2.6 |
Education | % | % | % | |
Mother | ||||
<Grade 12 | 28.8 | 48.0 | 31.7 | 34.7 |
Grade 12/diploma/technical qualification | 42.9 | 24.0 | 36.0 | 39.1 |
University level | 28.2 | 28.0 | 32.3 | 23.7 |
Father | ||||
<Grade 12 | 32.0 | 48.6 | 34.8 | 37.1 |
Grade 12/diploma/technical qualification | 36.0 | 40.3 | 40.3 | 39.1 |
University level | 32.0 | 11.1 | 24.9 | 23.7 |
Built Environment | ||||
Access to shops/markets | ||||
Disagree | 21.5 | 19.7 | 23.5 | 22.2 |
Agree | 78.5 | 80.3 | 76.5 | 77.8 |
Access to public transportation | ||||
Disagree | 14.1 | 17.1 | 20.2 | 18.0 |
Agree | 85.9 | 82.9 | 79.8 | 82.0 |
Traffic | ||||
Disagree | 54.8 | 70.4 | 62.8 | 62.4 |
Agree | 45.2 | 29.6 | 37.2 | 37.6 |
Safety | ||||
Disagree | 59.3 | 65.8 | 58.3 | 60.4 |
Agree | 40.7 | 34.2 | 41.7 | 39.6 |
Presence of sidewalk and bike paths | ||||
Disagree | 49.7 | 45.4 | 50.0 | 48.8 |
Agree | 50.3 | 54.6 | 50.0 | 51.2 |
Recreational facilities | ||||
Disagree | 54.2 | 63.2 | 52.7 | 55.4 |
Agree | 45.8 | 36.8 | 47.3 | 44.6 |
Fit Measures | Number of Profiles | ||
---|---|---|---|
1 | 2 | 3 | |
No. of parameters | 12 | 19 | 26 |
AIC | 11,907.918 | 11,643.753 | 11,552.738 |
BIC | 119,630.198 | 11,731.279 | 11,672.511 |
VLMR LRT | - | −5941.959 | −5802.877 |
1 profile vs. 2 profiles | 2 profiles vs. 3 profiles | ||
p-value | - | <0.001 | 0.217 |
Adjusted LRT test | - | 272.277 | 102.792 |
p-value | - | <0.001 | 0.222 |
Model 1 (M1) | Model 2 (M2) | Model 3 (M3) | ||||
---|---|---|---|---|---|---|
Variables | Odds Ratio (SE) | 95% CI | Odds Ratio (SE) | 95% CI | Odds Ratio (SE) | 95% CI |
Fixed effects | ||||||
Intercept (P2) § | 0.07 (0.02) *** | 0.04–0.13 | 0.01(0.01) *** | 0.00–0.09 | 0.01 (0.01) *** | 0.00–0.09 |
Maturity offset | 1.18 (0.10) * | 1.00–1.40 | 1.21 (0.13) ns | 0.99–1.48 | 1.22 (0.13) ns | 0.98–1.50 |
Father occupation | 1.24 (0.12) * | 1.02–1.51 | 1.24 (0.13) * | 1.01–1.53 | ||
Mother occupation | 0.93 (0.08) ns | 0.79–1.11 | 0.93 (0.09) ns | 0.78–1.12 | ||
Father education (Grade 12) ∞ | 3.18 (1.72) * | 1.10–9.19 | 3.38 (1.94) * | 1.10–10.41 | ||
Father education (university level) | 6.40 (5.09) * | 1.35–30.38 | 7.25 (6.13) * | 1.38–38.02 | ||
Mother education (Grade 12) ∞ | 0.91 (0.48) ns | 0.33–2.55 | 0.92 (0.51) ns | 0.31–2.72 | ||
Mother education (university level) | 0.79 (0.58) ns | 0.18–3.34 | 0.70 (0.55) ns | 0.15–3.29 | ||
Shops/markers (agree) ¥ | 1.70 (0.55) ns | 0.66–4.34 | ||||
Public transportation (agree) ¥ | 0.86 (0.43) ns | 0.33–2.30 | ||||
Traffic (agree) ¥ | 0.55 (0.22) ns | 0.26–1.19 | ||||
Sidewalks/bike paths (agree) ¥ | 1.02 (0.36) ns | 0.51–2.05 | ||||
Safety (agree) ¥ | 1.35 (0.48) ns | 0.67–2.73 | ||||
Recreational facilities (agree) ¥ | 1.01 (0.38) ns | 0.48–2.11 | ||||
Random effects (variance components) | Estimate (SE) | Estimate (SE) | Estimate (SE) | |||
Between siblings’ | 2.84 (1.17) | 3.58 (1.51) | 4.08 (1.76) | |||
ρ (95% CI) | ρ (95% CI) | ρ (95% CI) | ||||
Intraclass correlation | 0.46 (0.28–0.66) | 0.52 (0.32–0.71) | 0.55 (0.35–0.74) | |||
Deviance | 555.76 | 471.50 | 467.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, S.; Katzmarzyk, P.T.; Hedeker, D.; Maia, J. Profile Resemblance in Health-Related Markers: The Portuguese Sibling Study on Growth, Fitness, Lifestyle, and Health. Int. J. Environ. Res. Public Health 2018, 15, 2799. https://doi.org/10.3390/ijerph15122799
Pereira S, Katzmarzyk PT, Hedeker D, Maia J. Profile Resemblance in Health-Related Markers: The Portuguese Sibling Study on Growth, Fitness, Lifestyle, and Health. International Journal of Environmental Research and Public Health. 2018; 15(12):2799. https://doi.org/10.3390/ijerph15122799
Chicago/Turabian StylePereira, Sara, Peter T. Katzmarzyk, Donald Hedeker, and José Maia. 2018. "Profile Resemblance in Health-Related Markers: The Portuguese Sibling Study on Growth, Fitness, Lifestyle, and Health" International Journal of Environmental Research and Public Health 15, no. 12: 2799. https://doi.org/10.3390/ijerph15122799
APA StylePereira, S., Katzmarzyk, P. T., Hedeker, D., & Maia, J. (2018). Profile Resemblance in Health-Related Markers: The Portuguese Sibling Study on Growth, Fitness, Lifestyle, and Health. International Journal of Environmental Research and Public Health, 15(12), 2799. https://doi.org/10.3390/ijerph15122799