Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
2.2.1. Spatial Variations
2.2.2. Temporal Variations
2.2.3. Attainment Rate
2.2.4. The Major Air Pollutants
2.2.5. Correlations between Air Pollutants and Meteorological Factors
3. Results
3.1. Overview of the Air Pollutants
3.2. Spatial Variations of Air Pollutants
3.3. Temporal Variations of Air Pollutants
3.4. Attainment Rate of Air Quality Standards
3.5. The Major Air Pollutants
3.6. Correlations between Air Pollutants and Meteorological Factors
4. Discussion
4.1. Fujian Province Has a Low Level of Air Pollution
4.2. Spatial Characteristics of the Six Criteria Air Pollutants
4.3. Temporal Variation of the Six Air Pollutants
4.4. The Major Air Pollutant
4.5. Correlation Analysis
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, C.R.; Burnett, R.T.; Thun, M.J. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peter, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wu, C.; Hoek, G.; Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C. Land use regression models for estimating individual NOx and NO₂ exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Stockfelt, L.; Andersson, E.; Molnar, P.; Gidhagen, L.; Segersson, D.; Rosengren, A.; Barregard, L.; Sallsten, G. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environ. Int. 2014, 109, 61–71. [Google Scholar]
- Sand, M.; Berntsen, T.K.; Salzen, K.; Flanner, M.G.; Langer, J.; Victor, D.G. Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat. Clim. Chang. 2015, 30, 286–290. [Google Scholar] [CrossRef]
- Torres, P.; Ferreira, J.; Monteiro, A.; Costa, S.; Pereira, M.; Madureira, J.; Mendes, A.; Teixeira, J. Air pollution: A public health approach for Portugal. Sci. Total Environ. 2018, 643, 1041–1053. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, J.; Tao, J.; Li, N.; Su, X.; Chen, L.W.A.; Wang, P.; Shen, Z.; Liu, S.; Dai, W. Long-term trends in visibility and at Chengdu, China. PLoS ONE 2013, 8, e68894. [Google Scholar] [CrossRef]
- Grivas, G.; Chaloulakou, A.; Kassomenos, P. An overview of the PM10 pollution problem, in the Metropolitan Area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport. Sci. Total Environ. 2008, 389, 165–177. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Horowitz, L.W.; Naik, V.; Tai, A.P.K.; Fiore, A.M.; Mauzerall, D.L. Quantifying PM2.5 meteorology sensitivities in a global climate model. Atmos. Environ. 2016, 142, 43–56. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Sebastian, W.; John, H.; Charland, H. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ. 2014, 94, 742–753. [Google Scholar] [CrossRef]
- Deng, J.; Xing, Z.; Zhuang, B.; Du, K. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmos. Res. 2014, 143, 266–278. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, K.; Zhuang, G.; Fu, J.; Wang, Q.; Liu, T.; Deng, C.; Fu, Q. A multi-year evolution of aerosol chemistry impacting visibility and haze formation over an Eastern Asia megacity, Shanghai. Atmos. Environ. 2014, 92, 76–86. [Google Scholar] [CrossRef]
- Doyle, M.; Dorling, S. Visibility trends in the UK 1950–1997. Atmos. Environ. 2002, 36, 3161–3172. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Ahmadi-Givi, F.; Golestani, Y. Visibility trends in Tehran during 1958–2008. Atmos. Environ. 2012, 62, 512–520. [Google Scholar] [CrossRef]
- Jeff, D.; Yanosky, C.J.P.F.; Suh, A.H.H. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ. Health 2014, 13, 63. [Google Scholar] [Green Version]
- Kota, S.; Guo, H.; Myllyvirta, L.; Hu, J.; Sahu, S.; Garaga, R.; Ying, Q.; Gao, A.; Dahiya, S.; Wang, Y.; et al. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 2018, 180, 244–255. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Liang, S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 2009, 323, 1468–1470. [Google Scholar] [CrossRef]
- Chai, F.; Gao, J.; Chen, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Zhang, H.; Yun, Y.; Ren, C. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Bidokhti, A.A.; Ghafarian, P.; Najafi, M.S. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmos. Environ. 2016, 141, 443–453. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Su, J.; Dong, J.; Tan, S. Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Yan, S.; Cao, H.; Chen, Y.; Wu, C.; Hong, T.; Fan, H. Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing. Environ. Sci. Pollut. Res. 2016, 23, 13996–14007. [Google Scholar] [CrossRef] [PubMed]
- Mou, B.; He, B.; Zhao, D.; Chau, K. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Eng. Appl. Comput. Fluid Mech. 2017, 11, 293–309. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, G.; Huang-Fu, Y.; Song, D.; Liu, J.; Zhou, L.; Feng, Y. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment. Sci. Total Environ. 2016, 557–558, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, D.; Li, Y.; Hou, Q.; Yu, Y.; Qi, J.; Fu, W.; Dong, J.; Cheng, Y. Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water 2018, 10, 1629. [Google Scholar] [CrossRef]
- Kang, H.; Xie, Z.; Hu, Q. Ambient protein concentration in PM10 in Hefei, central China. Atmos. Environ. 2012, 54, 73–79. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Yuan, J.; Wang, J.; Dai, Q.; Li, T.; Bi, X.; Feng, Y.; Xiao, Z.; Zhang, Y.; et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China. Atmos. Res. 2017, 185, 22–31. [Google Scholar] [CrossRef]
- Song, Y.; Wan, X.; Bai, S.; Guo, D.; Ren, C.; Zeng, Y.; Li, Y.; Li, X. The Characteristics of Air Pollutants during Two Distinct Episodes of Fireworks Burning in a Valley City of North China. PLoS ONE 2017, 12, e0168297. [Google Scholar] [CrossRef]
- Ji, D.; Wang, Y.; Wang, L.; Chen, L.; Hu, B.; Tang, G.; Xin, J.; Song, T.; Wen, T.; Sun, Y.; et al. Analysis of heavy pollution episodes in selected cities of northern China. Atmos. Environ. 2012, 50, 338–348. [Google Scholar] [CrossRef]
- Xu, L.; Yu, Y.; Yu, J.; Chen, J.; Niu, Z.; Yin, L.; Zhang, F.; Liao, X.; Chen, Y. Spatial distribution and sources identification of elements in PM2.5 among the coastal city group in the Western Taiwan Strait region, China. Sci. Total Environ. 2013, 442, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Chen, J.; Zhang, F.; He, C.; Du, K.; Wang, Y. Characterization of PM10 atmospheric aerosol at urban and urban background sites in Fuzhou city, China. Environ. Sci. Pollut. Res. 2012, 19, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Chen, J.; Zhang, F.; He, C.; Zhao, J.; Yin, L. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 2012, 104–105, 264–272. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Chen, J.; Chen, X.; Niu, Z.; Lei, T.; Li, C.; Zhao, J. Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 2013, 11, 264–272. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, J.; Guo, Y.; Wu, T.; Chen, T.; Zhong, Q.; Yuan, D.; Chen, P.; Ou, C. Spatiotemporal pattern of air quality index and its associated factors in 31 Chinese provincial capital cities. Air Qual. Atmos. Health 2017, 10, 601–609. [Google Scholar] [CrossRef]
- Wu, S.; Schwab, J.; Yang, B.; Zheng, A.; Yuan, C. Two-Years PM2.5 Observations at Four Urban Sites along the Coast of Southeastern China. Aerosol Air Qual. Res. 2015, 15, 1799–1812. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Xu, Y.; Chen, J. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmos. Res. 2011, 99, 546–562. [Google Scholar] [CrossRef]
- Yan, J.; Chen, L.; Lin, Q.; Zhao, S.; Li, L. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China. J. Environ. Sci. 2018, 64, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yuan, C.; Huang, H.; Lee, C.; Wu, S. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci. Rep. 2016, 6, 22956. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wu, C.; Chen, W.; Yuan, C.; Wu, S.; Wang, X. Diurnal Variation and Chemical Characteristics of Atmospheric Aerosol Particles and Their Source Fingerprints at Xiamen Bay. Aerosol Air Qual. Res. 2013, 13, 596–607. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, L.; Yan, J.; Chen, H. Characterization of lead-containing aerosol particles in Xiamen during and after Spring Festival by single-particle aerosol mass spectrometry. Sci. Total Environ. 2017, 580, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, L.; Lin, Q.; Li, Z.; Chen, H.; Zhao, S. Chemical characteristics of submicron aerosol particles during a long-lasting haze episode in Xiamen, China. Atmos. Environ. 2015, 113, 118–126. [Google Scholar] [CrossRef]
- Yan, J.; Chen, L.; Zhao, S.; Zhang, M. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China. Chemosphere 2016, 159, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, J.; Chen, J.; Xu, Y.; Xu, L. Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China. J. Environ. Sci. 2011, 23, 1342–1349. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yan, L.; Zhao, H. Seasonal Variations of Atmospheric Pollution and Air Quality in Beijing. Atmosphere 2015, 6, 1753–1770. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yu, Y.; Yin, D.; Qin, D.; He, J.; Dong, L. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Sci. Total Environ. 2018, 624, 540–557. [Google Scholar] [CrossRef]
- Hsu, S.; Liu, S.; Tsai, F.; Engling, G.; Lin, I.; Chou, C.; Kao, S.; Lung, S.; Chan, C.; Lin, S.; et al. High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: An overview. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhang, F.; Chen, J.; Yin, L.; Wang, S.; Xu, L. Carbonaceous species in PM2.5 in the coastal urban agglomeration in the Western Taiwan Strait Region, China. Atmos. Res. 2013, 122, 102–110. [Google Scholar] [CrossRef]
- Li, G.; Bei, N.; Cao, J.; Wu, J.; Long, X.; Feng, T.; Dai, W.; Liu, S.; Zhang, Q.; Tie, X. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: Observations and source attributions. Atmos. Chem. Phys. 2017, 17, 2759–2774. [Google Scholar] [CrossRef]
- Gaudel, A.; Cooper, O.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.; Clerbaux, C.; Coheur, P.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anth 2018, 6, 1–58. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Chen, J.; Yu, Y.; Niu, Z.; Yin, L. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmos. Res. 2012, 106, 150–158. [Google Scholar] [CrossRef]
IAQI | PM10 | PM2.5 | SO2 | NO2 | CO | O3 | |||
---|---|---|---|---|---|---|---|---|---|
Daily | Daily | Daily | Hourly | Daily | Hourly | Daily | Hourly | Daily | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
50 | 50 | 35 | 50 | 150 | 40 | 100 | 2 | 5 | 160 |
100 | 150 | 75 | 150 | 500 | 80 | 200 | 4 | 10 | 200 |
150 | 250 | 115 | 475 | 650 | 180 | 700 | 15 | 35 | 300 |
200 | 350 | 150 | 800 | 800 | 280 | 1200 | 24 | 60 | 400 |
300 | 420 | 250 | 1600 | 565 | 2340 | 36 | 90 | 800 | |
400 | 500 | 350 | 2100 | 750 | 3090 | 48 | 120 | 1000 | |
500 | 600 | 500 | 2620 | 940 | 3840 | 60 | 150 | 1200 |
City | Sites | Region Category | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | Attainment Rates (%) |
---|---|---|---|---|---|---|---|---|---|
μg/m3 | μg/m3 | μg/m3 | μg/m3 | μg/m3 | mg/m3 | ||||
Fuzhou (FZ) | Gushan (GS) | EUA | 22.42 ± 17.59 | 31.22 ± 29.38 | 4.63 ± 3.91 | 14.69 ± 12.87 | 75.85 ± 42.80 | 0.56 ± 0.24 | 67.63 |
Kuaian (KA) | EUA | 27.16 ± 19.73 | 50.84 ± 36.58 | 6.46 ± 3.32 | 29.78 ± 20.97 | 46.22 ± 33.17 | 0.64 ± 0.26 | 51.18 | |
Shida (SD) | CCA | 30.18 ± 20.69 | 48.45 ± 34.02 | 7.27 ± 4.41 | 30.68 ± 17.20 | 54.24 ± 35.61 | 0.69 ± 0.25 | 48.02 | |
Wusibeilu (WSB) | CCA | 27.41 ± 20.29 | 51.26 ± 38.40 | 5.82 ± 3.84 | 33.08 ± 20.25 | 49.56 ± 36.05 | 0.69 ± 0.33 | 45.69 | |
Yangqiaoxilu (YQ) | SUA | 26.19 ± 16.98 | 44.85 ± 34.52 | 5.36 ± 3.02 | 28.96 ± 17.08 | 50.56 ± 34.75 | 0.74 ± 0.24 | 52.41 | |
Ziyang (ZY) | CCA | 26.42 ± 18.13 | 54.95 ± 36.23 | 5.44 ± 4.82 | 32.89 ± 19.72 | 47.58 ± 33.97 | 0.79 ± 0.29 | 47.04 | |
Average | 26.77 ± 19.13 | 47.12 ± 35.82 | 5.85 ± 4.01 | 28.38 ± 19.26 | 53.90 ± 37.48 | 0.68 ± 0.28 | 52.00 | ||
Putian (PT) | Canghoulu (CHL) | CCA | 30.94 ± 23.84 | 47.24 ± 33.70 | 5.23 ± 5.33 | 27.22 ± 14.93 | 47.05 ± 36.50 | 0.95 ± 0.43 | 52.09 |
Jiancezhan (PJCZ) | SUA | 30.43 ± 20.12 | 32.29 ± 27.69 | 3.60 ± 4.59 | 12.78 ± 10.10 | 55.91 ± 35.91 | 0.49 ± 0.30 | 61.50 | |
Liuzhong (PLZ) | CCA | 26.90 ± 18.59 | 46.68 ± 29.18 | 8.23 ± 5.64 | 21.78 ± 15.39 | 59.83 ± 40.27 | 0.77 ± 0.32 | 57.68 | |
Xiuyuquzhengfu (XYZF) | CCA | 31.58 ± 24.45 | 36.91 ± 31.80 | 10.63 ± 8.45 | 15.86 ± 11.20 | 64.58 ± 35.62 | 0.41 ± 0.24 | 59.26 | |
Dongzhenshuiku (DSK) | EUA | 22.93 ± 19.07 | 28.51 ± 24.79 | 4.68 ± 6.26 | 11.67 ± 9.73 | 41.29 ± 30.67 | 0.64 ± 0.27 | 73.57 | |
Average | 28.50 ± 21.65 | 38.23 ± 30.58 | 6.46 ± 6.71 | 17.82 ± 13.83 | 53.57 ± 36.98 | 0.65 ± 0.38 | 60.82 | ||
Quanzhou (QZ) | Tushanjie (TSJ) | CCA | 29.47 ± 22.05 | 50.36 ± 46.37 | 12.28 ± 12.5 | 26.46 ± 14.87 | 54.91 ± 33.66 | 0.61 ± 0.26 | 56.65 |
Jintoupu (JTP) | CCA | 28.41 ± 21.30 | 52.14 ± 43.99 | 11.40 ± 12.0 | 26.55 ± 17.26 | 52.34 ± 36.13 | 0.66 ± 0.30 | 56.58 | |
Wanan (WA) | SUA | 25.75 ± 17.23 | 43.69 ± 29.10 | 8.71 ± 8.79 | 24.46 ± 14.26 | 50.01 ± 32.25 | 0.63 ± 0.24 | 62.19 | |
Qingyuanshan (QYS) | EUA | 19.95 ± 12.98 | 37.39 ± 32.62 | 8.28 ± 9.70 | 12.00 ± 8.86 | 52.78 ± 31.10 | 0.52 ± 0.26 | 68.57 | |
Average | 25.83 ± 19.14 | 45.76 ± 39.17 | 10.13 ± 11.0 | 22.32 ± 15.41 | 52.34 ± 33.46 | 0.60 ± 0.27 | 61.00 | ||
Xiamen (XM) | Xidong (XD) | EUA | 29.00 ± 20.64 | 41.93 ± 29.42 | 5.46 ± 5.00 | 13.15 ± 11.18 | 59.53 ± 39.78 | 0.48 ± 0.23 | 64.82 |
Hongwen (HW) | CCA | 24.36 ± 14.56 | 39.43 ± 30.79 | 7.63 ± 5.60 | 29.33 ± 18.17 | 45.30 ± 26.49 | 0.61 ± 0.22 | 63.51 | |
Gulangyu (GLY) | CCA | 31.53 ± 22.18 | 49.14 ± 32.97 | 10.48 ± 12.7 | 27.60 ± 19.90 | 53.41 ± 28.07 | 0.62 ± 0.27 | 51.87 | |
Hulizhongxue (HL) | CCA | 26.93 ± 18.77 | 44.64 ± 32.97 | 12.39 ± 8.97 | 33.42 ± 20.62 | 39.57 ± 27.82 | 0.57 ± 0.23 | 53.94 | |
Average | 27.87 ± 19.34 | 43.65 ± 31.73 | 8.90 ± 8.92 | 25.81 ± 19.38 | 49.47 ± 31.94 | 0.57 ± 0.24 | 58.54 | ||
Zhangzhou (ZZ) | Lantian (LT) | SUA | 35.03 ± 21.36 | 64.04 ± 36.10 | 16.1 ± 12.17 | 35.36 ± 17.02 | 42.61 ± 28.90 | 0.69 ± 0.30 | 33.79 |
Zhangzhousanzhong (ZSZ) | CCA | 32.07 ± 20.00 | 57.62 ± 36.36 | 13.91 ± 11.5 | 27.45 ± 17.19 | 43.03 ± 31.05 | 0.78 ± 0.38 | 42.30 | |
Jiuhu (JH) | EUA | 33.87 ± 20.83 | 50.28 ± 32.96 | 11.59 ± 9.70 | 23.40 ± 19.02 | 50.86 ± 31.26 | 0.62 ± 0.23 | 45.47 | |
Average | 33.63 ± 20.75 | 57.17 ± 35.60 | 13.82 ± 11.3 | 28.52 ± 18.46 | 45.57 ± 30.69 | 0.70 ± 0.32 | 40.52 | ||
Longyan (LY) | Longyanshizhuan (LSZ) | CCA | 28.46 ± 19.09 | 41.41 ± 31.98 | 10.29 ± 8.05 | 17.31 ± 10.04 | 37.97 ± 29.28 | 0.83 ± 0.36 | 61.03 |
Shijiancezhan (LJCZ) | CCA | 25.70 ± 17.94 | 40.29 ± 28.21 | 11.83 ± 9.86 | 26.56 ± 15.88 | 48.05 ± 37.49 | 0.97 ± 0.44 | 63.77 | |
Minxizhiyejishuxueyuan (MXZY) | CCA | 24.95 ± 17.46 | 48.37 ± 32.72 | 10.12 ± 8.96 | 27.05 ± 17.72 | 41.06 ± 36.93 | 0.85 ± 0.36 | 56.08 | |
Longyanxueyuan (LXY) | SUA | 22.48 ± 16.08 | 36.63 ± 24.65 | 9.70 ± 4.85 | 18.83 ± 14.42 | 46.91 ± 34.71 | 0.71 ± 0.20 | 67.92 | |
Average | 24.43 ± 18.23 | 40.11 ± 30.61 | 10.07 ± 8.40 | 21.63 ± 15.80 | 41.49 ± 35.35 | 0.81 ± 0.40 | 62.20 | ||
Sanming (SM) | Sangang (SG) | SUA | 27.63 ± 17.85 | 44.64 ± 29.83 | 17.59 ± 17.1 | 27.91 ± 16.15 | 30.19 ± 28.17 | 1.45 ± 1.07 | 55.41 |
Sanmingerzhong (SEZ) | CCA | 28.24 ± 18.67 | 46.69 ± 32.54 | 17.32 ± 17.9 | 25.92 ± 14.23 | 31.20 ± 29.67 | 1.10 ± 0.62 | 55.55 | |
Sanyuanquzhengfu (SZF) | CCA | 27.22 ± 18.79 | 50.95 ± 35.66 | 16.85 ± 14.9 | 27.75 ± 16.36 | 29.38 ± 30.71 | 1.28 ± 0.77 | 50.68 | |
Yangxi (YX) | EUA | 27.23 ± 17.46 | 37.54 ± 29.29 | 12.00 ± 9.23 | 16.73 ± 9.77 | 35.30 ± 19.02 | 0.89 ± 0.50 | 62.24 | |
Average | 27.58 ± 18.21 | 44.99 ± 32.31 | 15.96 ± 15.4 | 24.61 ± 15.10 | 31.50 ± 29.50 | 1.18 ± 0.80 | 55.97 | ||
Nanping (NP) | Nanpingshijiancezhan (NJCZ) | CCA | 27.69 ± 19.80 | 29.07 ± 27.11 | 13.26 ± 11.1 | 15.98 ± 12.05 | 41.69 ± 32.82 | 1.02 ± 0.51 | 67.00 |
Nanpinglvye (NPLY) | CCA | 26.16 ± 21.06 | 33.34 ± 38.67 | 15.59 ± 14.1 | 15.06 ± 10.78 | 45.53 ± 35.79 | 0.94 ± 0.43 | 62.37 | |
Nanpingqizhong (NPQZ) | SUA | 25.26 ± 17.90 | 37.48 ± 35.45 | 11.33 ± 8.83 | 16.19 ± 12.02 | 39.21 ± 35.45 | 0.98 ± 0.33 | 63.63 | |
Mangdangshan (MDS) | EUA | 11.93 ± 11.95 | 15.26 ± 18.41 | 4.07 ± 5.37 | 3.45 ± 3.11 | 44.71 ± 46.27 | 0.59 ± 0.56 | 90.78 | |
Average | 22.41 ± 15.45 | 28.60 ± 20.83 | 11.00 ± 6.80 | 12.56 ± 7.38 | 42.46 ± 25.81 | 0.88 ± 0.33 | 70.94 | ||
Ningde (ND) | Jinhanshuiku (JHSK) | EUA | 24.09 ± 16.34 | 35.06 ± 27.73 | 4.33 ± 3.77 | 14.40 ± 11.42 | 44.22 ± 31.33 | 0.72 ± 0.33 | 68.58 |
Jiaochengqunongjiju (NNJG) | SUA | 28.21 ± 19.55 | 44.50 ± 30.98 | 7.11 ± 6.99 | 21.52 ± 15.86 | 47.73 ± 30.98 | 1.03 ± 0.47 | 57.72 | |
Ningdeshijiancezhan (NJCZ) | CCA | 27.55 ± 19.52 | 44.35 ± 30.39 | 5.51 ± 4.50 | 24.74 ± 15.49 | 44.66 ± 36.32 | 0.85 ± 0.44 | 57.56 | |
Average | 26.65 ± 18.65 | 41.38 ± 30.08 | 5.67 ± 5.42 | 20.28 ± 15.05 | 45.56 ± 35.36 | 0.87 ± 0.44 | 61.29 | ||
Fujian Province | Average | 27.04 ± 19.85 | 43.00 ± 31.86 | 9.76 ± 8.66 | 22.44 ± 15.52 | 46.21 ± 32.95 | 0.77 ± 0.38 | 58.14 |
City Center Areas | ||||||||
Pollutant | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | PM10-PM2.5 | No attainment rates |
Study period | 18.72 | 24.72 | 0.01 | 0.02 | 0.00 | 0.31 | 0.77 | 44.55 |
Spring | 24.05 | 27.13 | 0.01 | 0.04 | 0.00 | 0.34 | 0.96 | 52.53 |
Summer | 7.16 | 22.81 | 0.01 | 0.01 | 0.00 | 0.48 | 0.40 | 30.87 |
Autumn | 11.89 | 23.48 | 0.01 | 0.00 | 0.00 | 0.41 | 0.64 | 36.43 |
Winter | 32.65 | 24.57 | 0.04 | 0.01 | 0.02 | 0.02 | 1.12 | 58.43 |
Suburban Areas | ||||||||
Pollutant | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | PM10-PM2.5 | No attainment rates |
Study period | 19.19 | 22.66 | 0.01 | 0.02 | 0.15 | 0.36 | 0.79 | 43.18 |
Spring | 23.98 | 23.26 | 0.01 | 0.06 | 0.29 | 0.50 | 1.03 | 49.13 |
Summer | 6.60 | 21.79 | 0.01 | 0.01 | 0.18 | 0.69 | 0.47 | 29.75 |
Autumn | 12.68 | 21.48 | 0.00 | 0.00 | 0.02 | 0.27 | 0.51 | 34.96 |
Winter | 34.58 | 23.32 | 0.02 | 0.00 | 0.06 | 0.01 | 1.17 | 59.16 |
Exurban Areas | ||||||||
Pollutant | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | PM10-PM2.5 | No attainment rates |
Study period | 16.01 | 16.74 | 0.01 | 0.01 | 0.00 | 0.79 | 0.55 | 34.11 |
Spring | 21.23 | 18.50 | 0.02 | 0.00 | 0.00 | 1.41 | 0.71 | 41.87 |
Summer | 7.85 | 15.51 | 0.01 | 0.00 | 0.00 | 1.01 | 0.36 | 24.74 |
Autumn | 11.04 | 13.73 | 0.02 | 0.02 | 0.00 | 0.80 | 0.41 | 26.02 |
Winter | 25.11 | 17.97 | 0.00 | 0.03 | 0.00 | 0.04 | 0.73 | 43.88 |
Coastal Cities | ||||||||
Pollutant | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | PM10-PM2.5 | No attainment rates |
Study period | 18.38 | 24.34 | 0.01 | 0.02 | 0.00 | 0.51 | 0.75 | 44.01 |
Spring | 24.77 | 27.61 | 0.01 | 0.04 | 0.00 | 0.57 | 0.98 | 53.98 |
Summer | 7.04 | 22.79 | 0.01 | 0.01 | 0.00 | 0.86 | 0.43 | 31.14 |
Autumn | 11.37 | 21.83 | 0.01 | 0.01 | 0.00 | 0.58 | 0.54 | 34.34 |
Winter | 31.19 | 24.20 | 0.01 | 0.02 | 0.01 | 0.03 | 1.07 | 56.53 |
Inland Cities | ||||||||
Pollutant | PM2.5 | PM10 | SO2 | NO2 | CO | O3 | PM10-PM2.5 | No attainment rates |
Study period | 17.68 | 18.13 | 0.01 | 0.00 | 0.09 | 0.38 | 0.65 | 36.94 |
Spring | 20.11 | 17.35 | 0.01 | 0.02 | 0.15 | 0.81 | 0.75 | 39.2 |
Summer | 7.50 | 16.42 | 0.00 | 0.00 | 0.10 | 0.36 | 0.36 | 24.74 |
Autumn | 13.24 | 17.75 | 0.01 | 0.00 | 0.01 | 0.37 | 0.57 | 31.95 |
Winter | 31.20 | 19.68 | 0.47 | 0.01 | 0.07 | 0.00 | 0.93 | 52.36 |
All Cities in Fujian Province | Coastal Cities | Inland Cities | |||||||||||||
Pollutant | PM10 | CO | SO2 | NO2 | O3 | PM10 | CO | SO2 | NO2 | O3 | PM10 | CO | SO2 | NO2 | O3 |
PM2.5 | 0.66 | 0.57 | 0.39 | 0.41 | 0.15 | 0.64 | 0.47 | 0.42 | 0.48 | 0.10 | 0.62 | 0.43 | 0.43 | 0.46 | −0.02 |
PM10 | 0.47 | 0.38 | 0.49 | 0.14 | 0.38 | 0.42 | 0.54 | 0.07 | 0.40 | 0.40 | 0.45 | −0.02 | |||
CO | 0.23 | 0.37 | −0.14 | 0.22 | 0.54 | −0.14 | 0.44 | 0.44 | −0.07 | ||||||
SO2 | 0.29 | 0.14 | 0.29 | 0.14 | 0.38 | −0.6 | |||||||||
NO2 | −0.29 | −0.38 | −0.29 | ||||||||||||
City Central Areas | Suburban Areas | Exurban Areas | |||||||||||||
Pollutant | PM10 | CO | SO2 | NO2 | O3 | PM10 | CO | SO2 | NO2 | O3 | PM10 | CO | SO2 | NO2 | O3 |
PM2.5 | 0.64 | 0.39 | 0.37 | 0.43 | 0.03 | 0.65 | 0.28 | 0.30 | 0.40 | 0.13 | 0.70 | 0.38 | 0.34 | 0.48 | 0.17 |
PM10 | 0.32 | 0.37 | 0.47 | 0.05 | 0.28 | 0.34 | 0.49 | 0.12 | 0.31 | 0.39 | 0.51 | 0.21 | |||
CO | 0.32 | 0.38 | −0.23 | 0.41 | 0.34 | −0.14 | 0.31 | 0.34 | 0.08 | ||||||
SO2 | 0.26 | −0.11 | 0.32 | −0.04 | 0.32 | 0.07 | |||||||||
NO2 | −0.32 | −0.24 | −0.13 |
Pollutant | Fuzhou | Xiamen | Nanping | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WS | T | DPT | AP | RH | RF | WS | T | DPT | AP | RH | RF | WS | T | DPT | AP | RH | RF | |
PM2.5 | −0.18 | −0.32 | −0.35 | 0.29 | −0.19 | −0.20 | −0.11 | −0.34 | −0.38 | 0.15 | −0.15 | −0.13 | −0.16 | −0.23 | −0.29 | −0.25 | −0.13 | −0.12 |
PM10 | −0.16 | −0.09 | NS | NS | −0.18 | −0.15 | −0.06 | −0.14 | −0.29 | 0.13 | −0.32 | −0.21 | −0.08 | NS | −0.14 | 0.04 | −0.28 | −0.11 |
CO | −0.19 | −0.20 | −0.09 | −0.10 | −0.23 | −0.09 * | −0.20 | −0.21 | −0.08 | 0.08 | 0.21 | NS | −0.17 | −0.25 | −0.25 | 0.26 | NS | NS |
SO2 | NS | −0.30 | −0.39 | 0.36 | −0.33 | −0.09 | −0.15 | 0.27 | 0.21 | −0.08 | −0.07 | −0.16 | −0.09 | −0.34 | −0.40 | 0.35 | −0.13 | −0.09 |
NO2 | −0.34 | −0.25 | −0.15 | 0.15 | 0.19 | −0.14 | −0.41 | −0.29 | −0.13 | 0.07 | 0.25 | NS | −0.21 | −0.06 | 0.04 | 0.07 | 0.17 | NS |
O3 | 0.22 | 0.09 | −0.10 | NS | −0.49 | 0.09 | 0.27 | 0.32 | 0.07 | −0.07 | −0.40 | NS | 0.31 | 0.29 | −0.10 | −0.06 | −0.68 | 0.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Chen, Z.; Zhu, Z.; Liu, Q.; Van den Bosch, C.C.K.; Qi, J.; Wang, M.; Dang, E.; Dong, J. Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2846. https://doi.org/10.3390/ijerph15122846
Fu W, Chen Z, Zhu Z, Liu Q, Van den Bosch CCK, Qi J, Wang M, Dang E, Dong J. Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China. International Journal of Environmental Research and Public Health. 2018; 15(12):2846. https://doi.org/10.3390/ijerph15122846
Chicago/Turabian StyleFu, Weicong, Ziru Chen, Zhipeng Zhu, Qunyue Liu, Cecil C. Konijnendijk Van den Bosch, Jinda Qi, Mo Wang, Emily Dang, and Jianwen Dong. 2018. "Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China" International Journal of Environmental Research and Public Health 15, no. 12: 2846. https://doi.org/10.3390/ijerph15122846
APA StyleFu, W., Chen, Z., Zhu, Z., Liu, Q., Van den Bosch, C. C. K., Qi, J., Wang, M., Dang, E., & Dong, J. (2018). Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China. International Journal of Environmental Research and Public Health, 15(12), 2846. https://doi.org/10.3390/ijerph15122846