Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Sample Extraction and Analysis
2.4. Standard Preparations and Calibration Curves
2.5. Statistical Analysis
2.6. Quality Analysis and Quality Control
2.7. Methods of Evaluating Contamination Level and Ecological Risk of Trace Elements
2.7.1. Potential Ecological Risk Index (RI)
2.7.2. Enrichment Factor (EF)
2.7.3. Geo-accumulation Index (Igeo)
3. Result and Discussion
3.1. Spatial Distribution of Selected Soil Properties (pH and TOC)
3.2. Concentrations and Distribution of Trace Elements
3.3. Relationships of Trace Elements and Selected Soil Properties (pH and TOC)
3.4. Factor Analysis
3.5. Cluster Analysis
3.6. Contamination Level and Ecological Risk of Trace Elements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hashmi, M.Z.; Yu, C.; Shen, H.; Duan, D.; Shen, C.; Lou, L. Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China. Bio. Med. Res. Int. 2013. [Google Scholar] [CrossRef]
- Lu, C.; Wu, Y.; Hu, S.; Zhang, X.; Fu, Y. Distribution and Transport of Residual Lead and Copper Along Soil Profiles in a Mining Region of North China. Pedosphere 2016, 26, 848–860. [Google Scholar] [CrossRef]
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of Heavy Metals on Plants: An Overview. Int. J. App. Innov. Eng. Manag. 2016, 5, 56–66. [Google Scholar]
- Arao, T.; Ishikawa, S.; Murakami, M.; Abe, K.; Maejima, Y.; Makino, T. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ. 2010, 8, 247–257. [Google Scholar] [CrossRef]
- Masson, P.; Dalix, T.; Bussière, S. Determination of major and trace elements in plant samples by inductively coupled plasma-mass spectrometry. Commun. Soil Sci. Plant Anal. 2010, 41, 231–243. [Google Scholar] [CrossRef]
- Delang, C.O. Environmental & Socio-economic Studies Causes and distribution of soil pollution in China. Environ. Socio-Econ. Studies. 2017, 5, 1–17. [Google Scholar]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L. Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A. Review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. Int. J. Environ. Res. Public Health. 2018, 15, 1064. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Z.; Li, L.; Wang, L. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ. Sci. Pollut. Res. 2016, 23, 17058–17066. [Google Scholar] [CrossRef] [PubMed]
- Kibassa, D.; Kimaro, A.A.; Shemdoe, R.S. Heavy metals concentrations in selected areas used for urban agriculture in Dar es Salaam, Tanzania. Sci. Res. Essays Acad. J. 2013, 8, 1296–1303. [Google Scholar]
- Rahman, M.S.; Biswas, P.K.; Al Hasan, S.M.; Rahman, M.M.; Lee, S.H.; Kim, K.H.; Rahman, S.M.; Islam, M.R. The occurrences of heavy metals in farmland soils and their propagation into paddy plants. Environ. Monit. Assess. 2018. [Google Scholar] [CrossRef] [PubMed]
- Fosu-Mensah, B.Y.; Addae, E.; Yirenya-Tawiah, D.; Nyame, F. Heavy metals concentration and distribution in soils and vegetation at Korle Lagoon area in Accra, Ghana. Cogent. Environ. Sci. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Marrugo-negrete, J.; Pinedo-hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Chauhan, P.U.K. Risk Assessment of Heavy Metal Toxicity Through Contaminated Vegetables From Waste. Int. J. Adv. Technol. Eng. Sci. 2014, 51, 444–460. [Google Scholar]
- Olatunji, O.S.; Opeolu, B.O.; Fatoki, O.S.; Ximba, B.J. Heavy metals concentration levels in selected arable agricultural soils in South Western Nigeria. Int. J. Phys. Sci. 2013, 8, 421–427. [Google Scholar]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011. [Google Scholar] [CrossRef]
- Yuan, G.L.; Sun, T.H.; Han, P.; Li, J.; Lang, X.X. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J. Geochem. Explor. 2014, 136, 40–47. [Google Scholar] [CrossRef]
- Hu, H.; Jin, Q.; Kavan, P. A Study of Heavy Metal Pollution in China: Current Status, Pollution-control Policies and Countermeasures. Sustainability 2014, 6, 5820–5838. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Fang, W.; Yuan, J.; Yang, Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci. Total Environ. 2006, 370, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Boke, A.; Megersa, N.; Teju, E. Quantitative Determination of the Heavy Metal Levels in the Wild Edible Plant Parts and their Corresponding Soils of the Central and Western Regions of the Oromia State, Ethiopia. J. Environ. Anal. Toxicol. 2015. [Google Scholar] [CrossRef]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Ogunlaja, O.O.O.; Moodley, R.; Baijnath, H.; Jonnalagadda, S.B. Nutritional evaluation, bioaccumulation and toxicological assessment of heavy metals in edible fruits of FicussurForssk (Moraceae). J. Environ. Sci. Health 2017, 52, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Abbas, N.; Arshad, F.; Akram, M.; Khan, Z.I.; Ahmad, K. Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. Agric. Sci. 2013, 4, 262–265. [Google Scholar]
- Barrachina, A.C.; Carbonell, F.B.; Beneyto, J.M. Arsenic uptake, distribution, and accumulation in tomato plants: Effect of arsenite on plant growth and yield. J. Plant Nutr. 1995, 18, 1237–1250. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016. [Google Scholar] [CrossRef]
- Wang, M.Y.; Chen, A.K.; Wong, M.H.; Qiu, R.L.; Cheng, H.; Ye, Z.H. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ. Pollut. 2011, 159, 1730–1736. [Google Scholar] [CrossRef]
- Lin, Y.S.; Caffrey, J.L.; Lin, J.W.; Bayliss, D.; Faramawi, M.F.; Bateson, T.F. Increased risk of cancer mortality associated with cadmium exposures in Older Americans with low Zinc Intake. J. Toxicol. Environ. Health 2013, 76, 1–15. [Google Scholar] [CrossRef]
- Nieboer, E.; Tsuji, L.J.S.; Martin, I.D.; Liberda, E.N. Human biomonitoring issues related to lead exposure. Environ. Sci. Process. Impacts 2013, 15, 1824. [Google Scholar] [CrossRef]
- Hagberg, A. Industrial Wastewater Treatment and other Environmental Problems in Wuhan—Is Swedish Technology a Solution? Uppsala University: Uppsala, Sweden, 2007. [Google Scholar]
- Gong, M.; Wu, L.; Bi, X.Y.; Ren, L.M.; Wang, L.; Ma, Z.D.; Bao, Z.Y.; Li, Z.G. Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban-rural topsoils in Wuhan, central China. Environ. Geochem. Health 2010, 32, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.K.; Li, W.D.; Zhang, C.R.; Wang, S.Q.; Yang, Y.; He, L.Y. Source Apportionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics. Pedosphere 2013, 23, 437–444. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, G.; Liu, Y.; Wan, K.Y.; Zhang, R.; Chen, F. Soil Nutrient Assessment for Urban Ecosystems in Hubei, China. PLoS ONE 2013, 8, e75856. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Ma, T.; Dong, Z.; Yao, Y. Temporal and Spatial Analyses of the Landscape Pattern of Wuhan City Based on Remote Sensing Images. Int. J. Geo-Inf. 2018, 7, 340. [Google Scholar] [CrossRef]
- Sekabira, K.; Oryem Origa, H.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Tech. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Makokha, V.A.; Qi, Y.; Shen, Y.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in the East Dongting and Honghu Lake, China. Expo. Health 2016, 8, 31–41. [Google Scholar] [CrossRef]
- Weldegebriel, Y.; Chandravanshi, B.S.; Wondimu, T. Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicol. Environ. Saf. 2012, 77, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Wlakey, A. A critical examination of a rapid method for determination of organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–257. [Google Scholar]
- Liu, H.; Liu, G.; Zhou, C.; Yuan, Z.; Da, C. Geochemical speciation and ecological risk assessment of heavy metals in surface soils collected from the Yellow River Delta National Nature Reserve, China. Hum. Ecol. Risk Assess. 2017, 23, 1585–1600. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef]
- He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421–422, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Teng, Y.; Zhan, Y.; Wu, J.; Lin, X. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China. PLoS ONE 2015, 10, e0127736. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.G. Mechanical Properties, Rheology, and Haptaesthesis of Food. J. Texture Stud. 1969, 1, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Ogundiran, M.B.; Osibanjo, O. Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chem. Speciat. Bioavailab. 2009, 21, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lu, J.; Zhang, Z.; Zheng, H.; Gao, X.; Zhang, W. Heavy Metals Contamination in Greenhouse Soils and Vegetables in Guanzhong, China. J. Encapsulation Adsorption Sci. 2014, 4, 80–88. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, M.; Peng, C.; Alatalo, J.M. Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai. Environ. Sci. Pollut. Res. 2016, 23, 5222–5231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, W.X.; Zhao, H.Q.; Yang, Q.C.; Yang, Z.P. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Nat. Hazards Earth Syst. Sci. 2014, 14, 1599–1610. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 2005, 268, 243–253. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Behbahaninia, A.; Mirbagheri, S.A.; Khorasani, N.; Nouri, J.; Javid, A.H. Heavy metal contamination of municipal effluent in soil and plants. J. Food Agric. Environ. 2009, 7, 851–856. [Google Scholar]
- Rahaman, A.; Sadia Afroze, J.; Bashar, K.; Farhad Ali, M.; Razib Hosen, M. A Comparative Study of Heavy Metal Concentration in Different Layers of Tannery Vicinity Soil and Near Agricultural Soil. Am. J. Anal. Chem. 2016, 7, 880–889. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Yin, W.; Gan, H.; Zhang, C.; Deng, X.; Lian, J. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environ. Monit. Assess. 2009, 153, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Camobreco, V.J.; Richards, B.K.; Steenhuis, T.S.; Peverly, J.H.; McBride, M.B. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Sci. 1996, 161, 740–750. [Google Scholar] [CrossRef]
- Akenga, T.; Sudoi, V.; Machuka, W.; Kerich, E. Heavy Metal Concentrations in Agricultural Farms in Homa Hills Homa Bay County, Kenya. Int. J. Sci. Res. 2016, 5, 1664–1669. [Google Scholar]
- Yabe, J.; Ishizuka, M.; Umemura, T. Current Levels of Heavy Metal Pollution in Africa. J. Vet. Med. Sci. 2010, 72, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Mungai, T.M.; Owino, A.A.; Makokha, V.A.; Gao, Y.; Yan, X.; Wang, J. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa. Environ. Sci. Pollut. Res. 2016, 23, 18533–18541. [Google Scholar] [CrossRef]
- Accioly, A.; Montero, A.; Ugarte, O.M.; do Nascimento, C.W.; de Aguiar Accioly, A.M.; Biondi, C.M.; da Silva, Y.J. Background concentrations and reference values for heavy metals in soils of Cuba. Environ. Monit. Assess. 2015, 187, 4198. [Google Scholar]
- Rahman, S.H.; Khanam, D.; Adyel, T.M.; Islam, M.S.; Ahsan, M.A.; Akbor, M.A. Assessment of Heavy Metal Contamination of Agricultural Soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of Seasonal Variation and Indices. Appl. Sci. 2012, 2, 584–601. [Google Scholar] [CrossRef] [Green Version]
- Rakesh Sharma, M.S.; Raju, N.S. Correlation of Heavy Metal contamination with Soil properties of Industrial areas of Mysore, Karnataka, India by Cluster analysis. Int. Res. J. Environ. Sci. 2013, 2, 22–27. [Google Scholar]
- De Almeida Júnior, A.B.; do Nascimento, C.W.A.; Biondi, C.M.; de Souza, A.P.; Barros, F.M.; do Rêgo Barros, F.M. Background and reference values of metals in soils from Paraíba state, Brazil. Rev. Bras. Cienc. Sol. 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Tariq, S.R.; Shafiq, M.; Chotana, G.A. Distribution of Heavy Metals in the Soils Associated with the Commonly Used Pesticides in Cotton Fields. Scientifica 2016. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Sorooshian, A.; Ahmadi, M.R. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E.-Gohar iron mine, a case study in Iran. Environ. Sci. Pollut. Res. 2017, 24, 18798–18816. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Ji, H.; Li, Q.; Guo, X.; Tang, L.; Feng, J. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Explor. 2014, 138, 33–49. [Google Scholar] [CrossRef]
- Rehman, I.U.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.U. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M.; Faucon, M.-P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Gao, L.; Gao, B.; Zhou, Y.; Xu, D.; Sun, K. Predicting remobilization characteristics of cobalt in riparian soils in the Miyun Reservoir prior to water retention. Ecol. Indic. 2017, 80, 196–203. [Google Scholar] [CrossRef]
- Khaledian, Y.; Pereira, P.; Brevik, E.C.; Pundyte, N.; Paliulis, D. The Influence of Organic Carbon and pH on Heavy Metals, Potassium, and Magnesium Levels in Lithuanian Podzols. Land Degrad. Dev. 2017, 28, 345–354. [Google Scholar] [CrossRef]
- Constantin, C. Principal Component Analysis—A Powerful Tool in Computing Marketing Information. Bull. Transilv. Univ. Brasov Ser. V Econ. Sci. 2014, 7, 25–30. [Google Scholar]
- Yang, J.; Teng, Y.; Song, L.; Zuo, R. Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLoS ONE 2016, 11, e0168528. [Google Scholar] [CrossRef]
- Abdulqaderismaeel, W.; Kusag, A. Enrichment Factor and Geo-accumulation Index for Heavy Metals at Industrial Zone in Iraq. IOSR J. Appl. Geol. Geophys. 2015, 3, 2321–2990. [Google Scholar]
- Zhang, Z.; Juying, L.; Mamat, Z. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol. Environ. Saf. 2016, 126, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Jena, V.; Matic, N.; Kapralova, V.; Solanki, J.S. Assessment of Geo-Accumulation Index of Heavy Metal and Source of Contamination By Multivariate Factor Analysis. Int. J. Hazard Mater. 2014, 2, 18–22. [Google Scholar]
- Alshahri, F.; El-Taher, A. Assessment of Heavy and Trace Metals in Surface Soil Nearby an Oil Refinery, Assessment of Heavy and Trace Metals in Surface Soil Nearby an Oil Refinery, Saudi Arabia, Using Geoaccumulation and Pollution Indices. Arch. Environ. Contam. Toxicol. 2018, 75, 390–401. [Google Scholar] [CrossRef] [PubMed]
Cif | Contamination Level | Cd Class | Degree Contamination Level | Eif | Pollution Degree | RI | Risk Degree |
---|---|---|---|---|---|---|---|
Cif < 1 | Low contamination factor | Cd < 8 | Low | Eif < 40 | Low risk | RI < 150 | Low ecological risk |
1 ≤ Cif < 3 | Moderate contamination | 8 ≤ Cd < 16 | Moderate | 40 ≤ Eif ≤ 80 | Moderate risk | 150 ≤ RI < 300 | Moderate ecological risk |
3 ≤ Cif < 6 | Considerable contamination factor | 16 ≤ Cd < 32 | Considerable | 80 ≤ Eif <160 | Considerable risk | 300 ≤ RI < 600 | Considerable ecological risk |
Cif ≥ 6 | Very high contamination | Cd ≥ 32 | Very high | 160 ≤ Eif < 320 | high risk | RI > 600 | Very strong |
Eif ≥ 320 | Extremely high |
Elements | Min | Max | Mean | SD | Skewness | (a) | (b) | (c) | (d) | (e) | (f) |
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 66.56 | 321.73 | 140.1 | 58.84 | 1.795 | 90 | 86 | 200 | 250 | - | 1000 |
Fe | 13,583.04 | 55,398.01 | 27,304.9 | 10,705.1 | 1.148 | - | 29,400 | 29,400 | - | - | - |
Co | 7,244.46 | 5,4621.91 | 22,656.94 | 10,317.8 | 1.578 | - | 15.4 | 40 | 50 | 50 | - |
Ni | 51.18 | 210.63 | 117.8 | 50.93 | 0.701 | 40 | 37.3 | 50 | 100 | 100 | 500 |
Cu | 26.09 | 139.98 | 60.73 | 30.06 | 1.197 | 35 | 30.7 | 100 | 100 | 100 | 100 |
As | ND | 47.58 | 15.58 | 17.68 | 0.826 | 15 | 12.3 | 30 | - | - | 75 |
Sb | ND | 1.54 | 0.58 | 0.42 | 0.662 | - | 1.65 | 10 | - | - | - |
Cd | 0.07 | 77.62 | 15.44 | 23.84 | 1.69 | 0.2 | 0.172 | 0.5 | 5 | 3 | 0.7 |
Zn | 1.53 | 4.81 | 3.32 | 0.94 | −0.544 | 100 | 83.6 | 250 | 500 | 300 | 300 |
Hg | ND | 1.13 | 0.15 | 0.26 | 3.458 | 0.15 | 0.08 | 0.7 | - | 2 | 1 |
Pb | 38.81 | 117.9 | 74.16 | 20.22 | 0.395 | 35 | 26.7 | 80 | 150 | 50 | 200 |
pH | 4.2 | 6.87 | 5.71 | 0.73 | −0.543 | - | 6.5 | - | - | - | - |
TOC | 0.65 | 2.41 | 1.72 | 0.47 | −0.815 | - | - | - | - | - | - |
S | Cr | Fe | Co | Ni | Cu | As | Sb | Cd | Zn | Hg | Pb | PH | TOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth of 1–10 cm | |||||||||||||
1 | 94.20 | 14,491.1 | 10,133.9 | 73.64 | 39 | ND | 0.58 | ND | 2.85 | 0.15 | 53.42 | 5.21 | 1.59 |
2 | 169.20 | 28,732.1 | 22,910.7 | 163.3 | 109 | 31.78 | 1.09 | 34.61 | 4.35 | 0.36 | 70.71 | 5.91 | 1.75 |
3 | 163.13 | 28,633.9 | 23,232.1 | 160.8 | 61 | 22.11 | 0.63 | 13.82 | 4.38 | 0.51 | 77.95 | 7.86 | 1.71 |
4 | 251.54 | 40,557.7 | 33,375 | 293.75 | 123 | 42.93 | 1.75 | 75.13 | 5.65 | 0.19 | 106.44 | 8.07 | 2.6 |
5 | 266.25 | 46,817.3 | 36,740.4 | 253.08 | 138 | 63.83 | 1.95 | 124.59 | 6.57 | 0.58 | 151.06 | 5.39 | 2.14 |
6 | 112.69 | 20,019.2 | 16,653.9 | 97.6 | 62 | ND | 0.2 | ND | 1.97 | 0.19 | 61.88 | 5.73 | 1.51 |
7 | 224.50 | 39,650 | 31,433.3 | 181 | 165 | 60.82 | 1.78 | 108.46 | 5.4 | 0.31 | 141.33 | 6.29 | 1.03 |
8 | 137.77 | 23,946.4 | 35,053.6 | 120.27 | 33 | 43.64 | 0.65 | 28.45 | 4.28 | ND | 75.77 | 6.57 | 0.63 |
9 | 124.04 | 21,750 | 22,846.2 | 96.92 | 93 | 1.01 | 0.7 | 0.71 | 4.13 | ND | 94.17 | 6.14 | 2.58 |
10 | 130.17 | 20,175 | 20,925 | 120.08 | 53 | 3.24 | 0.52 | 1.67 | 3.67 | 0.08 | 106.75 | 6.58 | 2.31 |
11 | 138.56 | 28,903.9 | 24,884.6 | 100.19 | 43 | 10.02 | 0.52 | 5.2 | 2.58 | ND | 74.23 | 5.86 | 1.14 |
12 | 149.02 | 29,151.8 | 29,098.2 | 122.86 | 61 | 18.28 | 0.71 | 12.89 | 4.03 | 0.08 | 101.07 | 4.79 | 2.23 |
13 | 88.51 | 15,875 | 10,846.2 | 57.9 | 52 | ND | 0.04 | ND | 2.75 | ND | 65.77 | 6.48 | 2.25 |
14 | 172.50 | 29,033.3 | 28,258.3 | 125.42 | 60 | ND | 0.71 | ND | 3.47 | ND | 83.05 | 5.76 | 1.71 |
15 | 110.36 | 23,071.4 | 15,116.1 | 70.31 | 36 | 1.3 | ND | ND | 2.65 | ND | 65.43 | 4.6 | 1.46 |
16 | 328.66 | 51,901.8 | 55,580.4 | 203.75 | 131 | 23.03 | 0.13 | 3.08 | 3.73 | 1.41 | 57.6 | 5.05 | 1.4 |
17 | 138.17 | 20,908.3 | 25,366.7 | 109.33 | 47 | 5.52 | 0.87 | 4.78 | 4.93 | 0.33 | 87.17 | 4.12 | 1.55 |
18 | 107.05 | 16,642.9 | 19,991.1 | 81 | 35 | ND | 0.56 | ND | 3.48 | ND | 74.8 | 5.33 | 1.68 |
Depth of 10–20 cm | |||||||||||||
1 | 38.93 | 12,675 | 4355 | 28.71 | 13 | 0.69 | 0.22 | 0.15 | 1.13 | ND | 24.2 | 6.01 | 2 |
2 | 165.17 | 46,416.7 | 23,508.3 | 207.67 | 69 | 29.74 | 1.03 | 30.73 | 3.84 | ND | 77.34 | 5.89 | 1.85 |
3 | 95 | 26,758.3 | 13,491.7 | 87.08 | 51 | 15.43 | 0.36 | 5.53 | 2.6 | ND | 40.59 | 5.46 | 1.81 |
4 | 125.42 | 33,083.3 | 17,733.3 | 127.5 | 42 | 30.59 | 0.39 | 11.98 | 2.27 | ND | 55.28 | 5.66 | 1.5 |
5 | 145.09 | 36,517.9 | 21,232.1 | 138.93 | 57 | 27.24 | 1.13 | 30.65 | 3.06 | ND | 65.51 | 5.47 | 2 |
6 | 61.47 | 16,575 | 10,041.7 | 48.78 | 18 | 5.36 | 0.08 | 0.4 | 1.09 | ND | 30.76 | 6.07 | 1.42 |
7 | 130.63 | 34,928.6 | 20,723.2 | 107.23 | 30 | 34.34 | 0.53 | 18.09 | 2.82 | 0.05 | 94.46 | 5.9 | 0.93 |
8 | 118.75 | 31,000 | 28,875 | 100.8 | 42 | 44.49 | 0.58 | 25.82 | 3.2 | 0.18 | 79.41 | 5.66 | 0.66 |
9 | 99.13 | 20,884.6 | 17,682.7 | 82.69 | 46 | ND | 0.45 | ND | 2.54 | ND | 67.79 | 6.3 | 2.24 |
10 | 113.3 | 20,232.1 | 17,598.2 | 101.34 | 42 | ND | 0.29 | ND | 3.16 | ND | 78.18 | 6.42 | 2.17 |
11 | 70.08 | 17,044.6 | 11,857.1 | 65.87 | 12 | ND | ND | 0.74 | 1.01 | ND | 39.4 | 6.52 | 1.08 |
12 | 106.16 | 25,500 | 21,000 | 90.36 | 34 | 13.6 | 0.39 | 5.34 | 2.47 | ND | 62.59 | 4.4 | 1.94 |
13 | 65.62 | 13,182.7 | 8,005.77 | 49.54 | 57 | ND | ND | 2.52 | 2.38 | ND | 49.65 | 5.36 | 2.04 |
14 | 135.45 | 23,392.9 | 22,187.5 | 106.52 | 50 | 2.73 | 0.14 | 0.39 | 2.64 | ND | 58.49 | 5.35 | 1.99 |
15 | 93.71 | 19,682.7 | 12,990.4 | 59.91 | 23 | ND | ND | 0.29 | 1.93 | ND | 52.13 | 4.65 | 1.71 |
16 | 314.81 | 58,894.2 | 53,663.5 | 207.02 | 149 | 16.05 | 0.14 | 2.31 | 4.08 | 0.86 | 70.4 | 5.15 | 2.71 |
17 | 112.23 | 20,446.4 | 21,982.1 | 93.39 | 43 | 12.54 | 0.56 | 7.06 | 3.71 | ND | 78.78 | 4.28 | 1.46 |
18 | 146.52 | 25,500 | 26,276.8 | 106.52 | 66 | 0.54 | 1.08 | 0.59 | 4.79 | 0.26 | 96.25 | 5.38 | 1.28 |
Trace Elements | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Countries | Cr | Fe | Co | Ni | Cu | As | Sb | Cd | Zn | Hg | Pb | Reference |
China (Wuhan) | 140.10 | 27,304.9 | 22,656.94 | 119.12 | 60.73 | 15.58 | 0.58 | 15.44 | 3.32 | 0.15 | 74.16 | This study |
Bangladesh | - | 18,000 | - | 24.48 | 20.06 | 8.34 | - | - | - | - | 0.85 | [11] |
Cuba | 85.9 | - | 9.16 | 69.57 | 43.1 | 20.32 | - | 0.52 | 100.2 | 95.4 | 14.22 | [59] |
Bangladesh | 53.7 | 30,404 | - | 48.1 | 60 | 4073.1 | - | 0.0072 | 209 | 486.6 | 49.66 | [60] |
China (Xihu district) | 53.3 | - | 7.32 | 22.9 | 38.7 | - | - | 0.387 | 139 | - | 70 | [8] |
China (Hubei) | - | - | - | - | 386 | 35.4 | - | 2.59 | - | - | 120 | [34] |
India | 8.01 | 32.12 | - | 10.86 | 52.72 | - | - | - | 44.72 | - | - | [61] |
Tanzania | 7.68 | - | - | - | 5.62 | - | - | 0.22 | 33.18 | - | 14.32 | [10] |
Brazil | 20.61 | 20,273.75 | 7.44 | 12.86 | 111.54 | - | 13.81 | 38.31 | 224.29 | 954.88 | - | [62] |
Pakistan | 5.86 | - | 7.56 | 22.16 | 18.12 | - | - | 0.59 | - | - | 16.18 | [64] |
Wuhan (China) | 85 | - | 16 | 34 | 34 | - | - | 0.2 | 85 | 0.11 | 33 | [32] |
Wuhan (China) | 152.78 | - | 16.37 | 52.87 | 60.85 | - | - | 3.98 | 86.4 | - | 30.17 | [33] |
Democratic republic of Congo | - | 4.5 | 990 | 20 | 10,320 | 29 | - | 49 | 726 | - | 135 | [67] |
Iran | 48.08 | 101,588.89 | 38.5 | 74.69 | 100.84 | 16 | 0.22 | 0.16 | 72.96 | 22.30 | 10.80 | [64] |
Iran | 53.21 | 33,428.13 | 16.51 | 71.56 | 38.95 | 11.77 | 0.21 | 0.22 | 71.91 | 31.45 | 15.07 | [64] |
Soil along Chao River (China) | 118 | - | 17.5 | 20 | 46.5 | 6.07 | - | 0.16 | 113 | 0.360 | 20.3 | [65] |
Northern Pakistan | 29.94 | - | 36.76 | 26.61 | 35.28 | - | - | 2.04 | 101.76 | 4.69 | [66] | |
Miyun Reservoir (China) | - | - | 10.7–38.74 | - | - | - | - | - | - | - | - | [68] |
Elements | Cr | Fe | Co | Ni | Cu | As | Sb | Cd | Zn | Hg | Pb | pH | TOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | ||||||||||||
Fe | 0.961 ** | 1 | |||||||||||
Co | 0.920 ** | 0.861 ** | 1 | ||||||||||
Ni | 0.874 ** | 0.917 ** | 0.730 ** | 1 | |||||||||
Cu | 0.904 ** | 0.895 ** | 0.750 ** | 0.838 ** | 1 | ||||||||
As | 0.535 * | 0.692 ** | 0.489 * | 0.725 ** | 0.544 * | 1 | |||||||
Sb | 0.34 | 0.445 | 0.235 | 0.634 ** | 0.426 | 0.733 ** | 1 | ||||||
Cd | 0.422 | 0.576 * | 0.273 | 0.662 ** | 0.514 * | 0.902 ** | 0.854 ** | 1 | |||||
Zn | 0.618 ** | 0.609 ** | 0.599 ** | 0.719 ** | 0.631 ** | 0.635 ** | 0.770 ** | 0.609 ** | 1 | ||||
Hg | 0.849 ** | 0.772 ** | 0.809 ** | 0.588 * | 0.763 ** | 0.269 | -0.003 | 0.1 | 0.363 | 1 | |||
Pb | 0.388 | 0.412 | 0.375 | 0.495 * | 0.448 | 0.592 ** | 0.759** | 0.694 ** | 0.786 ** | 0.022 | 1 | ||
pH | −0.07 | 0.008 | −0.165 | 0.173 | 0.07 | 0.222 | 0.139 | 0.202 | −0.072 | −0.182 | 0.017 | 1 | |
TOC | 0.148 | 0.059 | −0.024 | 0.175 | 0.292 | −0.318 | −0.048 | −0.162 | 0.087 | 0.118 | −0.026 | 0.007 | 1 |
Elements | Component | |
---|---|---|
1 | 2 | |
Cr | 0.949 | 0.282 |
Fe | 0.886 | 0.408 |
Co | 0.904 | 0.198 |
Ni | 0.737 | 0.579 |
Cu | 0.846 | 0.377 |
As | 0.357 | 0.805 |
Sb | 0.077 | 0.949 |
Cd | 0.178 | 0.911 |
Zn | 0.438 | 0.748 |
Hg | 0.948 | −0.103 |
Pb | 0.130 | 0.848 |
Eigenvalues % of Variance Cumulative % | 7.167 65.152 65.152 | 2.296 20.877 86.029 |
Elements | Cif | Eif | EF | Degree of EF | Igeo | Contamination Level |
---|---|---|---|---|---|---|
Cr | 1.56 | 3.11 | 1.75 | Low enrichment | 0.05 | Uncontaminated to moderately contaminated |
Fe | 0.93 | 0 | 1 | Low enrichment | −0.69 | Uncontaminated |
Co | 1471.23 | 2942.46 | 1584.12 | Extremely high enrichment | 9.94 | Extremely contaminated |
Ni | 2.98 | 14.89 | 3.44 | Moderate enrichment | 0.99 | Uncontaminated to moderately contaminated |
Cu | 1.74 | 8.68 | 2.13 | Moderate enrichment | 0.21 | Uncontaminated to moderately contaminated |
As | 1.04 | 10.39 | 1.36 | Low enrichment | −0.53 | Uncontaminated |
Sb | 0.35 | 5.27 | 0.38 | Low enrichment | −2.09 | Uncontaminated |
Cd | 77.22 | 2316.61 | 90.4 | Extremely high enrichment | 5.69 | Extremely contaminated |
Zn | 0.03 | 0.03 | 0.04 | Low enrichment | −5.5 | Uncontaminated |
Hg | 1 | 40 | 2.02 | Moderate enrichment | −0.58 | Uncontaminated |
Pb | 2.12 | 10.59 | 2.99 | Moderate enrichment | 0.5 | Uncontaminated to moderately contaminated |
Cd = ΣCif =1560.2, RI = ΣEif = 5352.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, A.W.; Gereslassie, T.; Xu, Q.; Tang, X.; Wang, J. Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. Int. J. Environ. Res. Public Health 2018, 15, 2873. https://doi.org/10.3390/ijerph15122873
Tadesse AW, Gereslassie T, Xu Q, Tang X, Wang J. Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. International Journal of Environmental Research and Public Health. 2018; 15(12):2873. https://doi.org/10.3390/ijerph15122873
Chicago/Turabian StyleTadesse, Ababo Workineh, Tekleweini Gereslassie, Qiang Xu, Xiaojun Tang, and Jun Wang. 2018. "Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China" International Journal of Environmental Research and Public Health 15, no. 12: 2873. https://doi.org/10.3390/ijerph15122873
APA StyleTadesse, A. W., Gereslassie, T., Xu, Q., Tang, X., & Wang, J. (2018). Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China. International Journal of Environmental Research and Public Health, 15(12), 2873. https://doi.org/10.3390/ijerph15122873