Sex-Specific Associations in Nutrition and Activity-Related Risk Factors for Chronic Disease: Australian Evidence from Childhood to Emerging Adulthood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measures
2.2.1. Demographics
2.2.2. Risk and Protective Factors
Overweight/Obesity
Diet
Physical Activity
2.3. Statistical Analysis
2.4. Ethics Approval
3. Results
3.1. Participant Characteristics
3.2. Sex Differences Across Age Groups for Individual Risk Factors
4. Discussion
Strengths and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iburg, K.M. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar]
- Australian Institute of Health and Welfare. Australia’s Health 2016; Australian Institute of Health and Welfare: Canberra, Australia, 2016.
- Australian Bureau of Statistics. National health Survey: First Results, 2014–2015; Australian Bureau of Statistics: Canberra, Australia, 2015.
- Kelsey, M.M.; Zaepfel, A.; Bjornstad, P.; Nadeau, K.J. Age-related consequences of childhood obesity. Gerontology 2014, 60, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Kvaavik, E.; Klepp, K.-I.; Tell, G.S.; Meyer, H.E.; Batty, G.D. Physical fitness and physical activity at age 13 years as predictors of cardiovascular disease risk factors at ages 15, 25, 33, and 40 years: Extended follow-up of the oslo youth study. Pediatrics 2009, 123, e80–e86. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Somerville, A.; Baxter, A.; Norman, R.; Patten, S.; Vos, T.; Whiteford, H. Global variation in the prevalence and incidence of major depressive disorder: A systematic review of the epidemiological literature. Psychol. Med. 2013, 43, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Marniemi, J.; Pietinen, P.; Rönnemaa, T.; Viikari, J. Major dietary patterns and cardiovascular risk factors from childhood to adulthood. The cardiovascular risk in young finns study. Br. J. Nutr. 2007, 98, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Arnett, J.J. Emerging adulthood: What is it, and what is it good for? Child Dev. Perspect. 2007, 1, 68–73. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Serdula, M.K.; Dietz, W.H.; Bowman, B.A.; Marks, J.S.; Koplan, J.P. The spread of the obesity epidemic in the united states, 1991–1998. JAMA 1999, 282, 1519–1522. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K.M. Prevalence of overweight and obesity in the united states, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Larsen, P.; Adair, L.S.; Nelson, M.C.; Popkin, B.M. Five-year obesity incidence in the transition period between adolescence and adulthood: The national longitudinal study of adolescent health. Am. J. Clin. Nutr. 2004, 80, 569–575. [Google Scholar] [PubMed]
- Nelson, M.C.; Neumark-Stzainer, D.; Hannan, P.J.; Sirard, J.R.; Story, M. Longitudinal and secular trends in physical activity and sedentary behavior during adolescence. Pediatrics 2006, 118, e1627–e1634. [Google Scholar] [CrossRef] [PubMed]
- Story, M.; Stang, J. Understanding adolescent eating behaviors. In Guidelines for Adolescent Nutrition Services; Center for Leadership, Education and Training in Maternal and Child Nutrition: Minneapolis, MN, USA, 2005; pp. 9–19. [Google Scholar]
- Australian Bureau of Statistics. Australian Health Survey: First Results, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2012.
- Australian Bureau of Statistics. Australian Health Survey: Users’ Guide, 2011–2013; Australian Bureau of Statistics: Canberra, Australia, 2013.
- Australian Bureau of Statistics. National Nutrition and Physical Activity Survey, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2014.
- Australian Bureau of Statistics. Socio-Economic Indexes for Areas; Australian Bureau of Statistics: Canberra, Australia, 2013.
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Body Mass Index Classification; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bliss, R.M. Researchers produce innovation in dietary recall. Agric. Res. 2004, 52, 10. [Google Scholar]
- Food Standards Australia New Zealand Classification of Foods and Dietary Supplements. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/classificationofsupps/Pages/default.aspx (accessed on 1 November 2017).
- Australian National Health and Medical Research Council. Australian Dietary Guidelines; Australian National Health and Medical Research Council: Canberra, Australia, 2013.
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Australian Government, Department of Health. Australia’s Physical Activity and Sedentary Behaviour Guidelines; Australian Government, Department of Health: Canberra, Australia, 2014.
- Australian National Health and Medical Research Council. Dietary Guidelines for All Australians; National Health and Medical Research Council: Canberra, Australia, 2003.
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Kranz, S.; Smiciklas-Wright, H.; Siega-Riz, A.M.; Mitchell, D. Adverse effect of high added sugar consumption on dietary intake in american preschoolers. J. Pediatr. 2005, 146, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [PubMed]
- Kosova, E.C.; Auinger, P.; Bremer, A.A. The relationships between sugar-sweetened beverage intake and cardiometabolic markers in young children. J. Acad. Nutr. Diet. 2013, 113, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Armfield, J.M.; Spencer, A.J.; Roberts-Thomson, K.F.; Plastow, K. Water fluoridation and the association of sugar-sweetened beverage consumption and dental caries in australian children. Am. J. Public health 2013, 103, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Mahalik, J.R.; Levine Coley, R.; McPherran Lombardi, C.; Doyle Lynch, A.; Markowitz, A.J.; Jaffee, S.R. Changes in health risk behaviors for males and females from early adolescence through early adulthood. Health Psychol. 2013, 32, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Konstabel, K.; Pasquali, E.; Ruiz, J.R.; Hurtig-Wennlöf, A.; Mäestu, J.; Löf, M.; Harro, J.; Bellocco, R.; Labayen, I.; et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: A cohort study. PLoS ONE 2013, 8, e60871. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, C.; Pedersen, T.P.; Ojala, K.; Krølner, R.; Dzielska, A.; Ahluwalia, N.; Giacchi, M.; Kelly, C. Fruit and vegetable consumption trends among adolescents from 2002 to 2010 in 33 countries. Eur. J. Public Health 2015, 25 (Suppl. 2), 16–19. [Google Scholar] [CrossRef] [PubMed]
- Vainio, H.; Weiderpass, E. Fruit and vegetables in cancer prevention. Nutr. Cancer 2006, 54, 111–142. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Nowson, C.; Lucas, M.; MacGregor, G. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Denney-Wilson, E.; Crawford, D.; Dobbins, T.; Hardy, L.; Okely, A.D. Influences on consumption of soft drinks and fast foods in adolescents. Asia Pac. J. Clin. Nutr. 2009, 18, 447–452. [Google Scholar] [PubMed]
- Zick, C.D.; Smith, K.R.; Brown, B.B.; Fan, J.X.; Kowaleski-Jones, L. Physical activity during the transition from adolescence to adulthood. J. Phys. Act. Health 2007, 4, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Herman, K.M.; Craig, C.L.; Gauvin, L.; Katzmarzyk, P.T. Tracking of obesity and physical activity from childhood to adulthood: The physical activity longitudinal study. Pediatr. Obes. 2009, 4, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.J.; Côté, J.E.; Arnett, J.J. Identity and agency in emerging adulthood: Two developmental routes in the individualization process. Youth Soc. 2005, 37, 201–229. [Google Scholar] [CrossRef]
- Arnett, J.J.; Žukauskienė, R.; Sugimura, K. The new life stage of emerging adulthood at ages 18–29 years: Implications for mental health. Lancet Psychiatry 2014, 1, 569–576. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Pereira, M.A.; Curran, K.M. Changes in physical activity patterns in the united states, by sex and cross-sectional age. Med. Sci. Sports Exerc. 2000, 32, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Molarius, A.; Berglund, K.; Eriksson, C.; Lambe, M.; Nordström, E.; Eriksson, H.G.; Feldman, I. Socioeconomic conditions, lifestyle factors, and self-rated health among men and women in sweden. Eur. J. Public Health 2006, 17, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Von Bothmer, M.I.; Fridlund, B. Gender differences in health habits and in motivation for a healthy lifestyle among swedish university students. Nurs. Health Sci. 2005, 7, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.; Truby, H.; Morgan, P.; Callister, R.; Davies, P.; Collins, C.E. A comparison and validation of child versus parent reporting of children’s energy intake using food frequency questionnaires versus food records: Who’s an accurate reporter? Clin. Nutr. 2013, 32, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Ma, Y.; Clemow, L.; Ockene, I.S.; Saperia, G.; Stanek, E.J., III; Merriam, P.A.; Ockene, J.K. Gender differences in social desirability and social approval bias in dietary self-report. Am. J. Epidemiol. 1997, 146, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.M.; Abdel-Maksoud, M.F.; Crane, L.A.; Marcus, A.C.; Byers, T.E. Effects of social approval bias on self-reported fruit and vegetable consumption: A randomized controlled trial. Nutr. J. 2008, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Hurley, T.G.; Peterson, K.E.; Resnicow, K.; Thompson, F.E.; Yaroch, A.L.; Ehlers, M.; Midthune, D.; Williams, G.C.; Greene, G.W.; et al. Social desirability trait influences on self-reported dietary measures among diverse participants in a multicenter multiple risk factor trial. J. Nutr. 2008, 138, 226S–234S. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Children (5–9 Years) | Adolescents (10–17 Years) | Emerging Adults (18–25 Years) | ||||||
---|---|---|---|---|---|---|---|---|---|
Males, n = 368 (50.3) | Females, n = 371 (49.7) | Total, n = 739 (22.6) | Males, n = 675 (51.9) | Females, n = 629 (48.1) | Total, n = 1304 (36.0) | Males, n = 430 (49.9) | Females, n = 479 (50.1) | Total, n = 909 (41.4) | |
Mean age, years (SD) | 7.1 (1.4) | 7.2 (1.5) | 7.1 (1.4) | 13.4 (2.3) | 13.4 (2.2) | 13.4 (2.2) | 21.5 (2.2) | 21.6 (2.3) | 21.6 (2.3) |
SEIFA index 1 | |||||||||
Lowest 20% | 58 (16.0) | 65 (17.7) | 123 (16.9) | 117 (19.4) | 100 (14.3) | 217 (17.0) | 75 (18.4) | 111 (22.9) | 186 (20.7) |
Second quintile | 70 (20.7) | 63 (15.6) | 133 (18.2) | 120 (19.4) | 114 (18.8) | 234 (19.1) | 85 (17.9) | 93 (17.5) | 178 (17.7) |
Third quintile | 72 (18.7) | 69 (17.8) | 141 (18.2) | 136 (19.5) | 143 (24.4) | 279 (21.9) | 86 (18.8) | 86 (21.3) | 172 (20.0) |
Fourth quintile | 73 (16.5) | 78 (20.0) | 151 (18.2) | 117 (18.3) | 115 (19.5) | 232 (18.9) | 78 (17.8) | 67 (14.5) | 145 (16.2) |
Highest 20% | 95 (28.1) | 96 (28.9) | 191 (28.5) | 185 (23.3) | 157 (23.0) | 342 (23.2) | 106 (27.0) | 122 (23.8) | 228 (25.4) |
Overweight/obesity n (%) 2 | 66 (24.1) | 76 (27.5) | 142 (25.8) | 174 (30.7) | 156 (27.4) | 330 (29.2) | 171 (39.8) a,b | 145 (30.1) | 316 (35.1) c,d |
Fruit and vegetable n (%) 3 | 155 (44.4) | 165 (42.7) | 320 (43.6) | 63 (7.5) a | 76 (12.9) a | 139 (10.1) c | 7 (2.0) a,b | 20 (4.0) a,b | 27 (3.0) c,d |
Free sugars n (% who met) 4 | 152 (39.9) | 160 (41.0) | 312 (40.4) | 251 (38.4) | 202 (33.3) | 453 (36.0) | 190 (46.5) b | 202 (44.2) b | 392 (45.3) d |
Sugar-sweetened beverage on day prior n (% yes) 5 | 162 (46.0) | 160 (46.1) | 322 (46.1) | 379 (55.2) a | 328 (49.9) | 707 (52.7) c | 241 (54.0) a,b | 206 (41.8) a | 447 (47.9) |
Physical Activity n (% who met) 6 | 70 (17.4) | 68 (14.3) | 138 (15.8) | 22 (3.3) a | 23 (3.4) a | 45 (3.3) c | 176 (42.3) a,b | 247 (52.1) a,b | 423 (47.2) c,d |
Dependent Variables | Children (5–9 Years) | Adolescents (10–17 Years) | Emerging Adults (18–25 Years) | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Overweight/obese 1 | 1.22 | 0.74, 2.00 | 0.427 | 0.87 | 0.61, 1.23 | 0.418 | 0.65 | 0.44, 0.95 | 0.025 |
Fruit and vegetable consumption 2 | 0.94 | 0.64, 1.37 | 0.732 | 1.84 | 1.16, 2.93 | 0.010 | 2.05 | 0.61, 6.88 | 0.500 |
% energy from added sugars 2 | 0.95 | 0.65, 1.39 | 0.788 | 1.24 | 0.91, 1.68 | 0.169 | 1.09 | 0.77, 1.55 | 0.622 |
Sugar-sweetened beverages 3 | 1.01 | 0.69, 1.47 | 0.968 | 0.81 | 0.61, 1.10 | 0.168 | 0.61 | 0.43, 0.86 | 0.005 |
Physical Activity 2 | 0.79 | 0.48, 1.30 | 0.351 | 0.99 | 0.47, 2.07 | 0.983 | 1.44 | 1.01, 2.06 | 0.043 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoare, E.; Dash, S.R.; Jennings, G.L.; Kingwell, B.A. Sex-Specific Associations in Nutrition and Activity-Related Risk Factors for Chronic Disease: Australian Evidence from Childhood to Emerging Adulthood. Int. J. Environ. Res. Public Health 2018, 15, 214. https://doi.org/10.3390/ijerph15020214
Hoare E, Dash SR, Jennings GL, Kingwell BA. Sex-Specific Associations in Nutrition and Activity-Related Risk Factors for Chronic Disease: Australian Evidence from Childhood to Emerging Adulthood. International Journal of Environmental Research and Public Health. 2018; 15(2):214. https://doi.org/10.3390/ijerph15020214
Chicago/Turabian StyleHoare, Erin, Sarah R. Dash, Garry L. Jennings, and Bronwyn A. Kingwell. 2018. "Sex-Specific Associations in Nutrition and Activity-Related Risk Factors for Chronic Disease: Australian Evidence from Childhood to Emerging Adulthood" International Journal of Environmental Research and Public Health 15, no. 2: 214. https://doi.org/10.3390/ijerph15020214
APA StyleHoare, E., Dash, S. R., Jennings, G. L., & Kingwell, B. A. (2018). Sex-Specific Associations in Nutrition and Activity-Related Risk Factors for Chronic Disease: Australian Evidence from Childhood to Emerging Adulthood. International Journal of Environmental Research and Public Health, 15(2), 214. https://doi.org/10.3390/ijerph15020214