Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response
Abstract
:1. Introduction
Patient: “Doctor, I am scared of the unknown”Dr. Sigmund: “Such as strange cultures or exotic destinations?”Patient: “I don’t know, I don’t know anything about it...”Peter de Wit, strip in De Volkskrant, 14 August 2014
1.1. From Stressors to (Un)Safety
1.2. Neurobiological and Evolution-Theoretical Insights
1.3. The Consequences of GUTS for Stress Theory: An Overview
2. The Basic Challenge of Stress Science: Explaining Prolonged Stress-Related Physiological Activity
2.1. Current Explanations of Prolonged Activity
2.2. Why Was Prolonged Activity Neglected?
2.3. Reconstructing Stress Theory
2.3.1. Stressor Theories
2.3.2. Resource Theories
2.4. Why the Default Stress Response Doesn’t Need Conscious Awareness
2.4.1. Phylogenetically Old
2.4.2. Continuous Responses are Hard to Perceive
2.4.3. Determined in Early Life Stages with no Conscious Access
2.5. Summarizing the GUTS Principles
- The stress response is a default response.The stress response is a default response that is active when no information about safety, or no safety is perceived. When safety is perceived, the stress response is inhibited through prefrontal-subcortical inhibition. Because the stress response is “on” (activated) by default, it is already activated when there is simply no information, because by default it assumes that everything is unsafe, unless informed otherwise. Hence the name of the theory: the generalized unsafety theory of stress.
- The basic physiological state is co-determined by perception of safety.The stress response is the primary determinant of the state of the autonomic nervous system and therewith all other subsystems and organs in the body. It generally activates some (e.g., cardiovascular and some muscular systems) and inhibits others (e.g., metabolism, growth etc.), ultimately in service of fighting off threat of fleeing from it [108]. Given the stress response’s pervasiveness at all bodily levels, it follows that the basic state of any organism, of all its biological (sub)systems, at any given moment in time, is co-determined by the perception of safety. Thus, the actual physiological level fluctuates with the level of perceived safety and hence the level of disinhibition of the stress response.
- Perceived safety is the outcome of the brain’s prediction of survival chances.Perceived safety is the continuously changing outcome of a process of neurovisceral integration [109] of information from the body’s state and the environment, predicting the survival probability of the individual organism and its offspring (i.e., the passing of its genes to the next generation).
- The stress response is largely unconscious.This safety perception is nearly 100% unconscious, being a phylogenetically ancient and primary adaptive system in all animals, with only some animals, at least homo sapiens having added only a “thin layer” of conscious awareness.
- No stressors are needed for prolonged stress responses.Although the organism’s default response can also be disinhibited by “specific unsafeties”, that is, stressors (threats) or thoughts thereof (i.e., perseverative cognition [48,50,66]; see also below), in many people with prolonged default stress responses, it is likely to be far more often disinhibited without actual stressors or thoughts thereof In fact, only relatively few episodes of the total duration of their default stress response will be caused by specific unsafeties or thoughts thereof, while the rest of the duration of this response is determined by the unconscious perception of unsafety. Therefore, GU is a far more important cause of prolonged activity than the stress responses to specific unsafeties, that is, stressors or threats to resources, as they have been called in conventional stress theory.
- Perseverative cognition is part of GU.GU is also far more important than perseverative cognition in explaining prolonged activity. Perseverative cognition, such as worrying and ruminating [48,50], and potentially unconscious cognitive representations of threats [67,68,103], may be both the result of the default stress response and the cause of its maintenance. This is why even for non-pathological worriers it is so difficult to stop worrisome thinking, and why pathological as well as non-pathological worriers often do not understand what triggers worrying when the threats it pertains to are so often evidently unrealistic.
- Safety signals for humans are primarily social and learned.The safety signals that will lead to the inhibition of the default stress response are often very specific and are manifold. For social animals such as humans, cattle and many bird species, primary safety signals relate to social sources (e.g., a group one belongs to), but other safety sources may be shelter, hiding places and a surveyable environment, and there are many species-specific safety sources (see below). Many safety signals are learned, and they can become generalized, which in humans is the foundation for well-adapted individual.
3. Compromised Domains: Prolonged Stress Responses without Stressors
- They are associated with chronic physiological activity that is similar to a stress response;
- Their associated chronic physiological activity is not caused, or unlikely to be caused by stressors;
- They are characterized by a reduced availability of perceived safety.
3.1. Compromised Social Context
3.1.1. Isolated Social Animals
3.1.2. Loneliness in Humans
3.1.3. Low Social Status and Discriminated Minorities
3.1.4. Other Compromised Social Contexts
3.2. Compromised Early Safety Learning and “Prenatal Programming”
3.3. Compromised Physical Environment
3.3.1. Distorted Information
3.3.2. Nature Versus Urban
3.3.3. Urban Environment as Territory of Unknown Others
3.4. Compromised Bodies
3.4.1. Compromised Animal Bodies
3.4.2. Obesity, Low Aerobic Fitness and Old Age as Compromised States
3.4.3. Other Compromised Body Examples
3.5. Compromised Context of (Presumed) Stressors
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Exposed to events that never happen: Generalized unsafety, the default stress response, and prolonged autonomic activity. Neurosci. Biobehav. Rev. 2017, 74, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. The default response to uncertainty and the importance of perceived safety in anxiety and stress: An evolution-theoretical perspective. J. Anxiety Disord. 2016, 41, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F. Ever at the ready for events that never happen. Eur. J. Psychotraumatol. 2017, 8, 1309934. [Google Scholar] [CrossRef] [PubMed]
- Carleton, R.N. Into the unknown: A review and synthesis of contemporary models involving uncertainty. J. Anxiety Disord. 2016, 39, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.F. Behavioral control blunts reactions to contemporaneous and future adverse events: Medial prefrontal cortex plasticity and a corticostriatal network. Neurobiol. Stress 2015, 1, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Amat, J.; Baratta, M.V.; Paul, E.; Bland, S.T.; Watkins, L.R.; Maier, S.F. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 2005, 8, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kubala, K.H.; Christianson, J.P.; Kaufman, R.D.; Watkins, L.R.; Maier, S.F. Short- and long-term consequences of stressor controllability in adolescent rats. Behav. Brain Res. 2012, 234, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Motzkin, J.C.; Philippi, C.L.; Wolf, R.C.; Baskaya, M.K.; Koenigs, M. Ventromedial Prefrontal Cortex Is Critical for the Regulation of Amygdala Activity in Humans. Biol. Psychiatry 2015, 77, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Grupe, D.W.; Nitschke, J.B. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 2013, 14, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Ahern, G.L.; Sollers, J.J.; Lane, R.D.; Labiner, D.M.; Herring, A.M.; Weinand, M.E.; Hutzler, R.; Thayer, J.F. Heart rate and heart rate variability changes in the intracarotid sodium amobarbital test. Epilepsia 2001, 42, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, D.; van Gelderen, P.; Muellbacher, W.; Ziemann, U.; Immisch, I.; Hallett, M. The relative metabolic demand of inhibition and excitation. Nature 2000, 406, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.H. Evolution and dissolution of the nervous system. Croonian lectures delivered at the Royal College of Physicians, Lecture II. Br. Med. J. 1884, 1, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Jung, P.; Krause-Utz, A.; Lieb, K.; Schmahl, C.; Tuescher, O. Frontal dysfunctions of impulse control—A systematic review in borderline personality disorder and attention-deficit/hyperactivity disorder. Front. Hum. Neurosci. 2014, 8, 698. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F. On the importance of inhibition: Central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose-Response Publ. Int. Hormesis Soc. 2006, 4, 2–21. [Google Scholar] [CrossRef] [PubMed]
- McGeer, P.L.; Eccles, J.C.; McGeer, E.G. Molecular Neurobiology of the Mammalian Brain; Plenum Press: New York, NY, USA, 1978. [Google Scholar]
- Benjamin, P.R.; Staras, K.; Kemenes, G. What roles do tonic inhibition and disinhibition play in the control of motor programs? Front. Behav. Neurosci. 2010, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Nesse, R.M. Natural selection and the regulation of defences—A signal detection analysis of the smoke detector principle. Evol. Hum. Behav. 2005, 26, 88–105. [Google Scholar] [CrossRef]
- Trimmer, P.C.; Paul, E.S.; Mendl, M.T.; McNamara, J.M.; Houston, A.I. On the evolution and optimality of mood States. Behav. Sci. 2013, 3, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Anda, R.F.; Felitti, V.J.; Edwards, V.J.; Malarcher, A.M.; Croft, J.B.; Giles, W.H. Adverse childhood experiences are associated with the risk of lung cancer: A prospective cohort study. BMC Public Health 2010, 10, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacioppo, J.T.; Cacioppo, S.; Capitanio, J.P.; Cole, S.W. The Neuroendocrinology of Social Isolation. Annu. Rev. Psychol. 2015, 66, 733–767. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; Raikkonen, K.; Eriksson, J.G. Early life stress and later health outcomes-findings from the Helsinki Birth Cohort Study. Am. J. Hum. Biol. 2014, 26, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Hawkley, L.C.; Burleson, M.H.; Berntson, G.G.; Cacioppo, J.T. Loneliness in everyday life: Cardiovascular activity, psychosocial context, and health behaviors. J. Personal. Soc. Psychol. 2003, 85, 105–120. [Google Scholar] [CrossRef]
- Steptoe, A.; Shankar, A.; Demakakos, P.; Wardle, J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc. Natl. Acad. Sci. USA 2013, 110, 5797–5801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Boen, C.; Gerken, K.; Li, T.; Schorpp, K.; Harris, K.M. Social relationships and physiological determinants of longevity across the human life span. Proc. Natl. Acad. Sci. USA 2016, 113, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.K.; Beilin, L.J.; Robinson, M.; Burrows, S.; Mori, T.A. Contrasting effects of prenatal life stress on blood pressure and body mass index in young adults. J. Hypertens. 2015, 33, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Miskovic, V.; Schmidt, L.A.; Georgiades, K.; Boyle, M.; MacMillan, H.L. Stability of Resting Frontal Electroencephalogram [EEG] Asymmetry and Cardiac Vagal Tone in Adolescent Females Exposed to Child Maltreatment. Dev. Psychobiol. 2009, 51, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Oosterman, M.; de Schipper, J.C.; Fisher, P.; Dozier, M.; Schuengel, C. Autonomic reactivity in relation to attachment and early adversity among foster children. Dev. Psychopathol. 2010, 22, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Dale, L.P.; Carroll, L.E.; Galen, G.; Hayes, J.A.; Webb, K.W.; Porges, S.W. Abuse History is related to Autonomic Regulation to Mild Exercise and Psychological Wellbeing. Appl. Psychophysiol. Biofeedback 2009, 34, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Shenk, C.E.; Noll, J.G.; Putnam, F.W.; Trickett, P.K. A prospective examination of the role of childhood sexual abuse and physiological asymmetry in the development of psychopathology. Child Abuse Negl. 2010, 34, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.X.; Giles, W.H.; Felitti, V.J.; Dube, S.R.; Williams, J.E.; Chapman, D.P.; Anda, R.F. Insights into causal pathways for ischemic heart disease—Adverse childhood experiences study. Circulation 2004, 110, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Mastorci, F.; Vicentini, M.; Viltart, O.; Manghi, M.; Graiani, G.; Quaini, F.; Meerlo, P.; Nalivaiko, E.; Maccari, S.; Sgoifo, A. Long-term effects of prenatal stress: Changes in adult cardiovascular regulation and sensitivity to stress. Neurosci. Biobehav. Rev. 2009, 33, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Slopen, N.; Loucks, E.B.; Appleton, A.A.; Kawachi, I.; Kubzansky, L.D.; Non, A.L.; Buka, S.; Gilman, S.E. Early origins of inflammation: An examination of prenatal and childhood social adversity in a prospective cohort study. Psychoneuroendocrinology 2015, 51, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, M.A.C.; Riksen-Walraven, J.M.; de Weerth, C. Associations between maternal prenatal cortisol concentrations and child outcomes: A systematic review. Neurosci. Biobehav. Rev. 2015, 53, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, M.A.C.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Kubzansky, L.D.; Kawachi, I. Going to the heart of the matter: Do negative emotions cause coronary heart disease? J. Psychosom. Res. 2000, 48, 323–337. [Google Scholar] [CrossRef]
- Roest, A.M.; Martens, E.J.; de Jonge, P.; Denollet, J. Anxiety and Risk of Incident Coronary Heart Disease: A Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Tully, P.J.; Cosh, S.M.; Baune, B.T. A review of the affects of worry and generalized anxiety disorder upon cardiovascular health and coronary heart disease. Psychol. Health Med. 2013, 18, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Krohne, H.W. Stress and coping theories. Int. Encyclopedia Soc. Behav. Sci. 2001, 22, 15163–15170. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. Nature 1936, 138, 32, reprinted in J. Neuropsychiatry Clin. Neurosci. 1998, 10, 230–231, doi:10.1176/jnp.10.2.230a. [Google Scholar] [CrossRef]
- Selye, H. The Stress of Life; Rev. Edn. 1976; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Ursin, H. Activation, coping and psychosomatics. In Psychobiology of Stress: A Study of Coping Men; Ursin, H., Baade, E., Levine, S., Eds.; Academic Press: New York, NY, USA, 1978; pp. 201–228. [Google Scholar]
- Linden, W.; Earle, T.L.; Gerin, W.; Christenfeld, N. Physiological stress reactivity and recovery: Conceptual siblings separated at birth? J. Psychosom. Res. 1997, 42, 117–135. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Thayer, J.F. Anger inhibition, cardiovascular recovery, and vagal function: A model of the link between hostility and cardiovascular disease. Ann. Behav. Med. 1998, 20, 326–332. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress—Elaborating and testing the concepts of allostasis and allostatic load. In Socioeconomic Status and Health in Industrial Nations: Social, Psychological, and Biological Pathways; Adler, N.E., Marmot, M., McEwen, B., Stewart, J., Eds.; Annals of the New York Academy of Sciences: New York, NY, USA, 1999; pp. 30–47. [Google Scholar]
- Ursin, H.; Eriksen, H.R. The cognitive activation theory of stress. Psychoneuroendocrinology 2004, 29, 567–592. [Google Scholar] [CrossRef]
- Pieper, S.; Brosschot, J.F. Prolonged stress-related cardiovascular activation: Is there any? Ann. Behav. Med. 2005, 30, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F.; Pieper, S.; Thayer, J.F. Expanding stress theory: Prolonged activation and perseverative cognition. Psychoneuroendocrinology 2005, 30, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F.; Gerin, W.; Thayer, J.F. The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. J. Psychosom. Res. 2006, 60, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Verkuil, B.; Brosschot, J.F.; Gebhardt, W.; Thayer, J.F. When worries make you sick: A review of perseverative cognition: The default stress response and somatic health. J. Exp. Psychopathol. 2010, 1, 87–118. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Van Dijk, E.; Thayer, J.F. Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. Int. J. Psychophysiol. 2007, 63, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Britton, A.; Brunner, E.; Hemingway, H.; Malik, M.; Kumari, M.; Badrick, E.; Kivimaki, M.; Marmot, M. Work stress and coronary heart disease: What are the mechanisms? Eur. Heart J. 2008, 29, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Heraclides, A.; Kumari, M. Psychophysiological biomarkers of workplace stressors. Neurosci. Biobehav. Rev. 2010, 35, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Karasek, R.A.; Costas, K. Job strain and autonomic indices of cardiovascular disease risk. Am. J. Ind. Med. 2005, 48, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Landsbergis, P.A.; Dobson, M.; Koutsouras, G.; Schnall, P. Job Strain and Ambulatory Blood Pressure: A Meta-Analysis and Systematic Review. Am. J. Public Health 2013, 103, E61–E71. [Google Scholar] [CrossRef] [PubMed]
- Kivimaki, M.; Head, J.; Ferrie, L.E.; Shipley, M.J.; Steptoe, A.; Vahtera, J.; Marmot, M.G. Hypertension is not the link between job strain and coronary heart disease in the Whitehall II study. Am. J. Hypertens. 2007, 20, 1146–1153. [Google Scholar] [PubMed]
- Loerbroks, A.; Schilling, O.; Haxsen, V.; Jarczok, M.N.; Thayer, J.F.; Fischer, J.E. The fruits of ones labor: Effort-reward imbalance but not job strain is related to heart rate variability across the day in 35–44-year-old workers. J. Psychosom. Res. 2010, 69, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Bosma, H.; Peter, R.; Siegrist, J.; Marmot, M. Two alternative job stress models and the risk of coronary heart disease. Am. J. Public Health 1998, 88, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Dimsdale, J.E. Psychological stress and cardiovascular disease. J. Am. Coll. Cardiol. 2008, 51, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; McGuire, L.; Robles, T.F.; Glaser, R. Psychoneuroimmunology: Psychological influences on immune function and health. J. Consult. Clin. Psychol. 2002, 70, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Orth-Gomer, K.; Wamala, S.P.; Horsten, M.; Schenck-Gustafsson, K.; Schneiderman, N.; Mittleman, M.A. Marital stress worsens prognosis in women with coronary heart disease—The Stockholm Female Coronary Risk Study. JAMA J. Am. Med. Assoc. 2000, 284, 3008–3014. [Google Scholar] [CrossRef]
- Rosengren, A.; Hawken, S.; Ounpuu, S.; Sliwa, K.; Zubaid, M.; Almahmeed, W.A.; Blackett, K.N.; Sittih-amorn, C.; Sato, H.; Yusuf, S.; et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11,119 cases and 13,648 controls from 52 countries [the INTERHEART study]: Case-control study. Lancet 2004, 364, 953–962. [Google Scholar] [CrossRef]
- Krantz, D.S.; McCeney, M.K. Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease. Annu. Rev. Psychol. 2002, 53, 341–369. [Google Scholar] [CrossRef] [PubMed]
- Vitaliano, P.P.; Scanlan, J.M.; Zhang, J.P.; Savage, M.V.; Hirsch, I.B.; Siegler, I.C. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom. Med. 2002, 64, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, C.; Thayer, J.F.; Verkuil, B.; Lonigro, A.; Medea, B.; Couyoumdjian, A.; Brosschot, J.F. Physiological Concomitants of Perseverative Cognition: A Systematic Review and Meta-Analysis. Psychol. Bull. 2016, 142, 231–259. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Conscious and unconscious perseverative cognition: Is a large part of prolonged physiological activity due to unconscious stress? J. Psychosom. Res. 2010, 69, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F. Markers of chronic stress: Prolonged physiological activation and [un]conscious perseverative cognition. Neurosci. Biobehav. Rev. 2010, 35, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.; Matsuoka, K. Effect of mood during daily life on autonomic nervous activity balance during subsequent sleep. Auton. Neurosci. Basic Clin. 2009, 150, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.H.; Vasko, R.; Ombao, H.; Buysse, D.J.; Cashmere, D.; Kupfer, D.J. Acute stress affects autonomic tone during sleep. Sleep 2001, 24, A112–A113. [Google Scholar]
- Pieper, S.; Brosschot, J.F.; van der Leeden, R.; Thayer, J.F. Prolonged Cardiac Effects of Momentary Assessed Stressful Events and Worry Episodes. Psychosom. Med. 2010, 72, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, M.M.; Brosschot, J.F.; Versluis, A.; Verkuil, B. Peripheral physiological responses to subliminally presented negative affective stimuli: A systematic review. Biol. Psychol. 2017, 129, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, M.M.; Brosschot, J.F.; Verkuil, B.; Gillie, B.L.; Williams, D.P.; Koenig, J.; Vasey, M.W.; Thayer, J.F. Inducing unconscious stress: Cardiovascular activity in response to subliminal presentation of threatening and neutral words. Psychophysiology 2017, 54, 1498–1511. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, S.N.; Zorab, E.; Navaratnam, N.; Engels, M.; Mallorqui-Bague, N.; Minati, L.; Dowell, N.G.; Brosschot, J.F.; Thayer, J.F.; Critchley, H.D. Anger in brain and body: The neural and physiological perturbation of decision-making by emotion. Soc. Cogn. Affect. Neurosci. 2016, 11, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Verkuil, B.; Brosschot, J.F. Converging evidence that subliminal evaluative conditioning does not affect self-esteem or cardiovascular activity. Stress Health J. Int. Soc. Investig. Stress 2017. [Google Scholar] [CrossRef] [PubMed]
- Brosschot, J.F.; Geurts, S.A.E.; Kruizinga, I.; Radstaak, M.; Verkuil, B.; Quirin, M.; Kompier, M.A.J. Does Unconscious Stress Play a Role in Prolonged Cardiovascular Stress Recovery? Stress Health 2014, 30, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Mossink, J.C.L.; Verkuil, B.; Burger, A.M.; Tollenaar, M.S.; Brosschot, J.F. Ambulatory assessed implicit affect is associated with salivary cortisol. Front. Psychol. 2015, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, M.M.; Brosschot, J.F.; Thayer, J.F.; Verkuil, B. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses. Front. Psychol. 2016, 7, 425. [Google Scholar] [CrossRef] [PubMed]
- Verkuil, B.; Brosschot, J.F.; Tollenaar, M.S.; Lane, R.D.; Thayer, J.F. Prolonged Non-metabolic Heart Rate Variability Reduction as a Physiological Marker of Psychological Stress in Daily Life. Ann. Behav. Med. 2016, 50, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Ursin, H.; Murison, R. Biological and Psychological Basis of Psychosomatic Disease, Advances in the Biosciences; Pergamon: Oxford, UK, 1983; Volume 42, pp. 269–277. [Google Scholar]
- Sluiter, J.K.; de Croon, E.M.; Meijman, T.F.; Frings-Dresen, M.H.W. Need for recovery from work related fatigue and its role in the development and prediction of subjective health complaints. Occup. Environ. Med. 2003, 60, 62–70. [Google Scholar] [CrossRef]
- McEwen, B.S. Stress, adaptation, and disease—Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Cannon, W.B. The mechanisms of emotional disturbance of bodily functions. N. Engl. J. Med. 1928, 198, 165–172. [Google Scholar] [CrossRef]
- Weiss, J.M. Somatic effects of predictable and unpredictable shock. Psychosom. Med. 1970, 32, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.W.; Harwood, C.T.; Rosenthal, N.R. Influence of some environmental factors on plasma and urinary 17-hydroxycorticosteroid levels in the rhesus monkey. Am. J. Physiol. 1957, 190, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Seligman, M.E.; Maier, S.F. Failure to escape traumatic shock. J. Exp. Psychol. 1967, 74, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Holmes, T.H.; Rahe, R.H. Social readjustment rating scale. J. Psychosom. Res. 1967, 11, 213–218. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Launier, R. Stress-related transactions between person and environment. In Perspectives in Interactional Psychology; Lawrence, P., Lewis, M., Eds.; Plenum: New York, NY, USA, 1978; pp. 287–327. [Google Scholar]
- Lazarus, R.S. Emotion and Adaptation; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Lazarus, R.S.; Folkman, S. Cognitive theories of stress and the issue of circularity. In Dynamics of Stress. Physiological, Psychologcal, and Social Perspectives; Appley, M.H., Trumbull, R., Eds.; Plenum: New York, NY, USA, 1986; pp. 63–80. [Google Scholar]
- Kanner, A.D.; Coyne, J.C.; Schaefer, C.; Lazarus, R.S. Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. J. Behav. Med. 1981, 4, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.P.; Stephens, P.M. Stress, Health, and Thesocial Environment. A Sociobiologic Approach to Medicine; Springer: New York, NY, USA, 1977. [Google Scholar]
- Frankenhauser, M. Psychobiological effects of life stress. In Coping and Health; Levine, S., Ursin, H., Eds.; Plenu Press: New York, NY, USA, 1980. [Google Scholar]
- Karasek, R.A. Job demands, job decision latitude, and mental strain—Implications for job redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Cohen, S.; Gianaros, P.J.; Manuck, S.B. A Stage Model of Stress and Disease. Perspect. Psychol. Sci. 2016, 11, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J. Adverse health effects of high-effort/low-reward conditions. J. Occup. Health Psychol. 1996, 1, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, R.; Leppin, A. Social support and health—A theoretical and empirical overview. J. Soc. Pers. Relationsh. 1991, 8, 99–127. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy—Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Scheier, M.F.; Carver, C.S. Effects of optimism on psychological and physical well-being—Theoretical overview and empirical update. Cogn. Ther. Res. 1992, 16, 201–228. [Google Scholar] [CrossRef]
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The job demands-resources model of burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Hobfoll, S.E. Conservation of resources—A new attempt at conceptualizing stress. Am. Psychol. 1989, 44, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Hobfoll, S.E.; Freedy, J.R.; Green, B.L.; Solomon, S.D. Coping reactions to extreme stress: The roles of resource loss and resource availability. In Handbook of Coping: Theory, Research, Applications; Zeidner, M., Endler, N.S., Eds.; Wiley: New York, NY, USA, 1996; pp. 322–349. [Google Scholar]
- Lane, R.D. Neural substrates of implicit and explicit emotional processes: A unifying framework for psychosomatic medicine. Psychosom. Med. 2008, 70, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.F. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav. Immun. 2003, 17, 69–85. [Google Scholar] [CrossRef]
- Maier, S.F.; Watkins, L.R. The immune system as a sensory system: Implications for psychology. Curr. Dir. Psychol. Sci. 2000, 9, 98–102. [Google Scholar] [CrossRef]
- Dijksterhuis, A.; Aarts, H.; Smith, P.K. The power of the subliminal: On subliminal persuasion and other potential applications. In The New Unconscious; Hassin, R., Uleman, J.S., Bargh, J.A., Eds.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Hull, J.G.; Slone, L.B.; Meteyer, K.B.; Matthews, A.R. The nonconsciousness of self-consciousness. J. Personal. Soc. Psychol. 2002, 83, 406–424. [Google Scholar] [CrossRef]
- Sapolsky, R. Why Zebras Don’t Get Ulcers: An Updated Guide to Stress, Stress-Related Diseases, and Coping; Henry Holt and Company: New York, NY, USA, 2004. [Google Scholar]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; Waterman, J.M. Vigilance and grouping in the southern African ground squirrel [Xerus inauris]. Afr. J. Ecol. 2011, 49, 286–291. [Google Scholar] [CrossRef]
- Ellis, S.; Franks, D.W.; Nattrass, S.; Cant, M.A.; Weiss, M.N.; Giles, D.; Balcomb, K.C.; Croft, D.P. Mortality risk and social network position in resident killer whales: Sex differences and the importance of resource abundance. Proc. Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed]
- Beery, A.K.; Kaufer, D. Stress, social behavior, and resilience: Insights from rodents. Neurobiol. Stress 2015, 1, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, S.; Capitanio, J.P.; Cacioppo, J.T. Toward a Neurology of Loneliness. Psychol. Bull. 2014, 140, 1464–1504. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.Y.; Wu, C.F. Social interaction-mediated lifespan extension of Drosophila Cu/Zn superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA 2008, 105, 7506–7510. [Google Scholar] [CrossRef] [PubMed]
- Cikara, M.; Van Bavel, J.J. The Neuroscience of Intergroup Relations an Integrative Review. Perspect. Psychol. Sci. 2014, 9, 245–274. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Hawkey, L.C.; Berntson, G.G. The anatomy of loneliness. Curr. Dir. Psychol. Sci. 2003, 12, 71–74. [Google Scholar] [CrossRef]
- Blascovich, J. Challenge, threat, and health. In Handbook of Motivation Science; Shah, J.Y., Gardner, W.L., Eds.; Guilford: New York, NY, USA, 2008; pp. 481–493. [Google Scholar]
- Ottaviani, C.; Brosschot, J.F.; Lonigro, A.; Medea, B.; Van Diest, I.; Thayer, J.F. Hemodynamic Profiles of Functional and Dysfunctional Forms of Repetitive Thinking. Ann. Behav. Med. 2017, 51, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Seery, M.D. Challenge or threat? Cardiovascular indexes of resilience and vulnerability to potential stress in humans. Neurosci. Biobehav. Rev. 2011, 35, 1603–1610. [Google Scholar] [PubMed]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendano, M.; Muennig, P.; Guida, F.; Ricceri, F.; d’Errico, A.; Barros, H.; Bochud, M.; et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: A multicohort study and meta-analysis of 1.7 million men and women. Lancet 2017, 389, 1229–1237. [Google Scholar] [PubMed]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.J.R.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E. Socioeconomic inequalities in health in 22 European countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringhini, S.; Sabia, S.; Shipley, M.; Brunner, E.; Nabi, H.; Kivimaki, M.; Singh-Manoux, A. Association of Socioeconomic Position with Health Behaviors and Mortality. JAMA J. Am. Med. Assoc. 2010, 303, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Stringhini, S.; Rousson, V.; Viswanathan, B.; Gedeon, J.; Paccaud, F.; Bovet, P. Association of Socioeconomic Status with Overall and Cause Specific Mortality in the Republic of Seychelles: Results from a Cohort Study in the African Region. PLoS ONE 2014, 9, e102858. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpoor, A.R.; Bergen, N.; Mendis, S.; Harper, S.; Verdes, E.; Kunst, A.; Chatterji, S. Socioeconomic inequality in the prevalence of noncommunicable diseases in low- and middle-income countries: Results from the World Health Survey. BMC Public Health 2012, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. The Status Syndrome: How Social Standing Affects Our Health and Longevity; Bloomsbury Publishing: London, UK, 2004; p. 288. ISBN 0747570493. [Google Scholar]
- Kawachi, I.; Kennedy, B.P. The Health of Nations: Why Inequality Is Harmful to Your Health; New Press: New York, NY, USA, 2002. [Google Scholar]
- Hemingway, H.; Shipley, M.; Brunner, E.; Britton, A.; Malik, M.; Marmot, M. Does autonomic function link social position to coronary risk? The Whitehall II study. Circulation 2005, 111, 3071–3077. [Google Scholar] [PubMed]
- Lampert, R.; Ickovics, J.; Horwitz, R.; Lee, F. Depressed autonomic nervous system function in African Americans and individuals of lower social class: A potential mechanism of race- and class-related disparities in health outcomes. Am. Heart J. 2005, 150, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Boyce, W.T. Social stratification, health, and violence in the very young. Ann. N. Y. Acad. Sci. 2004, 1036, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Sternberg, E. Beyond heart rate variability—Vagal regulation of allostatic systems. Ann. N. Y. Acad. Sci. 2006, 1088, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.; Epel, E.; Gruenewald, T.; Karlamangla, A.; McEwen, B.S. Socio-economic differentials in peripheral biology: Cumulative allostatic load. Ann. N. Y. Acad. Sci. 2010, 1186, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Adler, N.E.; Epel, E.S.; Castellazzo, G.; Ickovics, J.R. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychol. 2000, 19, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.E.; Chen, E.; Parker, K.J. Psychological Stress in Childhood and Susceptibility to the Chronic Diseases of Aging: Moving toward a Model of Behavioral and Biological Mechanisms. Psychol. Bull. 2011, 137, 959–997. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, K.D.; Arias, E.; Anderson, R.N. How Did Cause of Death Contribute to Racial Differences in Life Expectancy in the United States in 2010? NCHS Data Brief 2013, 125, 1–8. [Google Scholar]
- Minino, A. Life Expectancy at Birth, by Sex and Black or White Race—National Vital Statistics System, United States, 2000–2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 891–892. [Google Scholar]
- Clark, R.; Anderson, N.B.; Clark, V.R.; Williams, D.R. Racism as a stressor for African Americans—A biopsychosocial model. Am. Psychol. 1999, 54, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Dolezsar, C.M.; McGrath, J.J.; Herzig, A.J.M.; Miller, S.B. Perceived Racial Discrimination and Hypertension: A Comprehensive Systematic Review. Health Psychol. 2014, 33, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.K.; Hoggard, L.S.; Richmond, A.S.; Gray, D.L.; Williams, D.P.; Thayer, J.F. Examining the Association Between Perceived Discrimination and Heart Rate Variability in African Americans. Cult. Divers. Ethn. Minor. Psychol. 2017, 23, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Coan, J.A.; Sbarra, D.A. Social baseline theory: The social regulation of risk and effort. Currt. Opin. Psychol. 2015, 1, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I.; Lieberman, M.D.; Williams, K.D. Does rejection hurt? An fMRI study of social exclusion. Science 2003, 302, 290–292. [Google Scholar] [PubMed]
- Graham, F.K.; Jackson, J.C. Arousal systems and infant heart rate responses. Adv. Child Dev. Behav. 1970, 5, 59–117. [Google Scholar] [PubMed]
- Maunder, R.G.; Lancee, W.J.; Nolan, R.P.; Hunter, J.J.; Tannenbaum, D.W. The relationship of attachment insecurity to subjective stress and autonomic function during standardized acute stress in healthy adults. J. Psychosom. Res. 2006, 60, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Anda, R.F.; Dong, M.X.; Brown, D.W.; Felitti, V.J.; Giles, W.H.; Perry, G.S.; Valerie, E.J.; Dube, S.R. The relationship of adverse childhood experiences to a history of premature death of family members. BMC Public Health 2009, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Dube, S.R.; Fairweather, D.; Pearson, W.S.; Felitti, V.J.; Anda, R.F.; Croft, J.B. Cumulative childhood stress and autoimmune diseases in adults. Psychosom. Med. 2009, 71, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Meoni, L.A.; Wang, N.Y.; Chu, A.Y.; Ford, D.E.; Klag, M.J. Association of childhood socioeconomic status with subsequent coronary heart disease in physicians. Arch. Intern. Med. 2006, 166, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
- Pollak, S.D.; Kistler, D.J. Early experience is associated with the development of categorical representations for facial expressions of emotion. Proc. Natl. Acad. Sci. USA 2002, 99, 9072–9076. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, J.; Kaplan, G.A.; Cohen, R.D.; Julkunen, J.; Salonen, J.T. Alexithymia and risk of death in middle-aged men. J. Psychosom. Res. 1996, 41, 541–549. [Google Scholar] [CrossRef]
- Ottaviani, C.; Shahabi, L.; Tarvainen, M.; Cook, I.; Abrams, M.; Shapiro, D. Cognitive, behavioral, and autonomic correlates of mind wandering and perseverative cognition in major depression. Front. Neurosci. 2015, 8, 433. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, A.E.; Dawe, K.; Deanfield, J.; Stronks, K.; Gemke, R.J.B.J.; Vrijkotte, T.G.M.; Lawlor, D.A. The association of maternal prenatal psychosocial stress with vascular function in the child at age 10–11 years: Findings from the Avon longitudinal study of parents and children. Eur. J. Prev. Cardiol. 2014, 21, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, A.E.; van Eijsden, M.; Stronks, K.; Gemke, R.J.B.J.; Vrijkotte, T.G.M. Prenatal Stress and Balance of the Child’s Cardiac Autonomic Nervous System at Age 5–6 Years. PLoS ONE 2012, 7, e30413. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, D.K.; Spiro, A.; Turiano, N.A. Do health behaviors explain the effect of neuroticism on mortality? Longitudinal findings from the VA Normative Aging Study. J. Res. Personal. 2009, 43, 653–659. [Google Scholar] [CrossRef]
- Scheier, M.F.; Bridges, M.W. Person variables and health—Personality predispositions and acute psychological states as shared determinants for disease. Psychosom. Med. 1995, 57, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Batty, G.D.; McIntosh, A.M.; Russ, T.C.; Deary, I.J.; Gale, C.R. Psychological distress, neuroticism, and cause-specific mortality: Early prospective evidence from UK Biobank. J. Epidemiol. Community Health 2016, 70, 1136–1139. [Google Scholar] [CrossRef] [PubMed]
- Esterling, B.A.; Antoni, M.H.; Kumar, M.; Schneiderman, N. Emotional repression, stress disclosure responses, and epstein-barr viral capsid antigen titers. Psychosom. Med. 1990, 52, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S. Environmental enrichment. Practical strategies for improving feline welfare. J. Feline Med. Surg. 2009, 11, 901–912. [Google Scholar] [PubMed]
- Arrant, A.E.; Schramm-Sapyta, N.L.; Kuhn, C.M. Use of the light/dark test for anxiety in adult and adolescent male rats. Behav. Brain Res. 2013, 256, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P.; Franco, L.A.; Romero, L.M. Are novel objects perceived as stressful? The effect of novelty on heart rate. Physiol. Behav. 2016, 161, 7–14. [Google Scholar] [PubMed]
- Miura, H.; Qiao, H.; Ohta, T. Attenuating effects of the isolated rearing condition on increased brain serotonin and dopamine turnover elicited by novelty stress. Brain Res. 2002, 926, 10–17. [Google Scholar] [CrossRef]
- Petty, F.; Kramer, G.L.; Larrison, A.L. Neurochemistry of stress: Regional brain levels of biogenic amines and metabolites with ten different stressors. Biog. Amines 1996, 12, 377–394. [Google Scholar]
- Van den Buuse, M.; van Acker, S.; Fluttert, M.; de Kloet, E.R. Blood pressure, heart rate, and behavioral responses to psychological “novelty” stress in freely moving rats. Psychophysiology 2001, 38, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Vinke, C.M.; Godijn, L.M.; van der Leij, W.J.R. Will a hiding box provide stress reduction for shelter cats? Appl. Anim. Behav. Sci. 2014, 160, 86–93. [Google Scholar] [CrossRef]
- Kessler, M.R.; Turner, D.C. Stress and adaptation of cats [felis silvestris catus] housed singly, in pairs and in groups in boarding catteries. Anim. Welf. 1997, 6, 243–254. [Google Scholar]
- Neilson, J.C. Fear of places and things. In Manual of Canine and Feline Behavioural Medicine; Horwltz, D., Mills, D., Heath, S., Eds.; British Small Animal Veterinary Association: Shurdington, UK, 2002; pp. 173–180. [Google Scholar]
- Mason, J.W. Scope of psychoendocrine research. Psychosom. Med. 1968, 30, 565–575. [Google Scholar] [CrossRef]
- Mason, J.W. An historical view of the stress field: Parts 1 and 2. J. Hum. Stress 1975, 1, 6–35. [Google Scholar] [CrossRef] [PubMed]
- Recio, A.; Linares, C.; Banegas, J.R.; Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environ. Res. 2016, 146, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Zijlema, W.; Cai, Y.T.; Doiron, D.; Mbatchou, S.; Fortier, I.; Gulliver, J.; de Hoogh, K.; Morley, D.; Hodgson, S.; Elliott, P.; et al. Road traffic noise, blood pressure and heart rate: Pooled analyses of harmonized data from 88,336 participants. Environ. Res. 2016, 151, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Gori, T.; Babisch, W.; Basner, M. Cardiovascular effects of environmental noise exposure. Eur. Heart J. 2014, 35, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Fecht, D.; Hansell, A.L.; Morley, D.; Dajnak, D.; Vienneau, D.; Beevers, S.; Toledano, M.B.; Kelly, F.J.; Anderson, H.R.; Gulliver, J. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies. Environ. Int. 2016, 88, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Hansell, A.L.; Gulliver, J.; Morley, D.; Blangiardo, M.; Fecht, D.; Toledano, M.B.; Beevers, S.D.; Anderson, H.R.; Kelly, F.J.; et al. Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London. Eur. Heart J. 2015, 36, 2653–2661. [Google Scholar] [CrossRef] [PubMed]
- Templeton, C.N.; Greene, E. Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls. Proc. Natl. Acad. Sci. USA 2007, 104, 5479–5482. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.D.; Linting, M.; Vermeer, H.J.; Van IJzendoorn, M.H. Noise in center-based child care: Associations with quality of care and child emotional wellbeing. J. Environ. Psychol. 2015, 42, 190–201. [Google Scholar] [CrossRef]
- Ross, M.; Mason, G.J. The effects of preferred natural stimuli on humans’ affective states, physiological stress and mental health, and the potential implications for well-being in captive animals. Neurosci. Biobehav. Rev. 2017, 83, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Völker, S.; Kistemann, T. The impact of blue space on human health and well-being—Salutogenetic health effects of inland surface waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.; ten Have, M.; van Dorsselaer, S.; van Wezep, M.; Hermans, T.; de Graaf, R. Local availability of green and blue space and prevalence of common mental disorders in the Netherlands. Br. J. Psychiatry Open 2016, 2, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Lanki, T.; Siponen, T.; Ojala, A.; Korpela, K.; Pennanen, A.; Tiittanen, P.; Tsunetsugu, Y.; Kagawa, T.; Tyrvainen, L. Acute effects of visits to urban green environments on cardiovascular physiology in women: A field experiment. Environm. Res. 2017, 159, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Gladwell, V.F.; Brown, D.K.; Barton, J.L.; Tarvainen, M.P.; Kuoppa, P.; Pretty, J.; Suddaby, J.M.; Sandercock, G.R.H. The effects of views of nature on autonomic control. Eur. J. Appl. Physiol. 2012, 112, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- MacKerron, G.; Mourato, S. Happiness is greater in natural environments. Glob. Environ. Chang. Hum. Policy Dimens. 2013, 23, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Maas, J.; Verheij, R.A.; de Vries, S.; Spreeuwenberg, P.; Schellevis, F.G.; Groenewegen, P.P. Morbidity is related to a green living environment. J. Epidemiol. Community Health 2009, 63, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; de Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- McMahan, E.A.; Estes, D. The effect of contact with natural environments on positive and negative affect: A meta-analysis. J. Posit. Psychol. 2015, 10, 507–519. [Google Scholar] [CrossRef]
- Nisbet, E.K.; Zelenski, J.M. Underestimating Nearby Nature: Affective Forecasting Errors Obscure the Happy Path to Sustainability. Psychol. Sci. 2011, 22, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Zuk, M. Paleofantasy: What Evolution Really Tells Us about Sex, Diet, and How We Live; W. W. Norton Company: New York, NY, USA, 2013. [Google Scholar]
- Cosmides, L.; Tooby, J. Evolutionary Psychology: New Perspectives on Cognition and Motivation. Annu. Rev. Psychol. 2013, 64, 201–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tsuchiya, N.; New, J.; Hurlemann, R.; Adolphs, R. Preferential attention to animals and people is independent of the amygdala. Soc. Cogn. Affect. Neurosci. 2015, 10, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Nairne, J.S.; Pandeirada, J.N.S. Adaptive memory: Ancestral priorities and the mnemonic value of survival processing. Cogn. Psychol. 2010, 61, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Van Le, Q.; Isbell, L.A.; Matsumoto, J.; Nguyen, M.; Hori, E.; Maior, R.S.; Tomaz, C.; Anh Hai, T.; Ono, T.; Nishijo, H. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proc. Natl. Acad. Sci. USA 2013, 110, 19000–19005. [Google Scholar] [CrossRef] [PubMed]
- New, J.; Krasnow, M.M.; Truxaw, D.; Gaulin, S.J.C. Spatial adaptations for plant foraging: Women excel and calories count. Proc. R. Soc. B Biol. Sci. 2007, 274, 2679–2684. [Google Scholar] [CrossRef] [PubMed]
- Meert, K.; Pandelaere, M.; Patrick, V.M. Taking a shine to it: How the preference for glossy stems from an innate need for water. J. Consum. Psychol. 2014, 24, 195–206. [Google Scholar] [CrossRef]
- New, J.; Cosmides, L.; Tooby, J. Category-specific attention for animals reflects ancestral priorities, not expertise. Proc. Natl. Acad. Sci. USA 2007, 104, 16598–16603. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Z.; Ariely, D.; Hare, B. Bonobos respond prosocially toward members of other groups. Sci. Rep. 2017, 7, 14733. [Google Scholar] [CrossRef] [PubMed]
- Brilot, B.O.; Bateson, M. Water bathing alters threat perception in starlings. Biol. Lett. 2012, 8, 379–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, E.T.; Ruploh, T. Captive domesticated zebra finches [Taeniopygia guttata] have increased plasma corticosterone concentrations in the absence of bathing water. Appl. Anim. Behav. Sci. 2016, 182, 80–85. [Google Scholar] [CrossRef]
- Vestergaard, K.S.; Skadhauge, E.; Lawson, L.G. The stress of not being able to perform dustbathing in laying hens. Physiol. Behav. 1997, 62, 413–419. [Google Scholar] [CrossRef]
- Crook, R.J.; Dickson, K.; Hanlon, R.T.; Walters, E.T. Nociceptive Sensitization Reduces Predation Risk. Curr. Biol. 2014, 24, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Aslani, S.; Vieira, N.; Marques, F.; Costa, P.S.; Sousa, N.; Palha, J.A. The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl. Psychiatry 2015, 5, e684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.L.; Johnsen, B.H.; Sollers, J.J.; Stenvik, K.; Thayer, J.F. Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. Eur. J. Appl. Physiol. 2004, 93, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Julius, S. The defense reaction—A common denominator of coronary risk and blood-pressure in neurogenic hypertension. Clin. Exp. Hypertens. 1995, 17, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Jurivich, D.A.; Gao, W.; Singer, D.H. Relation of High Heart Rate Variability to Healthy Longevity. Am. J. Cardiol. 2010, 105, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Aroniadis, O.C.; Drossman, D.A.; Simren, M. A Perspective on Brain-Gut Communication: The American Gastroenterology Association and American Psychosomatic Society Joint Symposium on Brain-Gut Interactions and the Intestinal Microenvironment. Psychosom. Med. 2017, 79, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Maren, S.; Phan, K.L.; Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013, 14, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Verkuil, B.; Atasayi, S.; Molendijk, M.L. Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data. PLoS ONE 2015, 10, e0135225. [Google Scholar] [CrossRef] [PubMed]
- Hinne, C. Personal Communication; Leiden University Medical Center: Leiden, The Netherlands, 2017. [Google Scholar]
- Arab, C.; Martins Dias, D.P.; de Almeida Barbosa, R.T.; de Carvalho, T.D.; Valenti, V.E.; Crocetta, T.B.; Ferreira, M.; de Abreu, L.C.; Ferreira, C. Heart rate variability measure in breast cancer patients and survivors: A systematic review. Psychoneuroendocrinology 2016, 68, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ma, Z.; Zhang, L.; Zhou, S.; Wang, J.; Wang, B.; Fu, W. Heart rate variability in the prediction of survival in patients with cancer: A systematic review and meta-analysis. J. Psychosom. Res. 2016, 89, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Giese-Davis, J.; Wilhelm, F.H.; Tamagawa, R.; Palesh, O.; Neri, E.; Taylor, C.B.; Kraemer, H.C.; Spiegel, D. Higher Vagal Activity as Related to Survival in Patients with Advanced Breast Cancer: An Analysis of Autonomic Dysregulation. Psychosom. Med. 2015, 77, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Masel, E.K.; Huber, P.; Schur, S.; Kierner, K.A.; Nemecek, R.; Watzke, H.H. Predicting discharge of palliative care inpatients by measuring their heart rate variability. Ann. Palliat. Med. 2014, 3, 244–249. [Google Scholar] [PubMed]
- Chiang, J.-K.; Koo, M.; Kuo, T.B.J.; Fu, C.-H. Association between Cardiovascular Autonomic Functions and Time to Death in Patients with Terminal Hepatocellular Carcinoma. J. Pain Symptom Manag. 2010, 39, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.B.R.E.; Brosschot, J.F.; Versluis, A.; Thayer, J.F.; Verkuil, B. New methods to optimally detect episodes of non-metabolic heart rate variability reduction as an indicator of psychological stress in everyday life. Int. J. Psychophysiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Verkuil, B.; Spinhoven, P.; van der Ploeg, M.M.; Brosschot, J.F. Changing Mental Health and Positive Psychological Well-Being Using Ecological Momentary Interventions: A Systematic Review and Meta-analysis. J. Med. Internet Res. 2016, 18, e152. [Google Scholar] [CrossRef] [PubMed]
- Vonck, K.; Raedt, R.; Naulaerts, J.; De Vogelaere, F.; Thiery, E.; Van Roost, D.; Aldenkamp, B.; Miatton, M.; Boon, P. Vagus nerve stimulation...25 years later! What do we know about the effects on cognition? Neurosci. Biobehav. Rev. 2014, 45, 63–71. [Google Scholar] [PubMed]
- Hein, E.; Nowak, M.; Kiess, O.; Biermann, T.; Bayerlein, K.; Kornhuber, J.; Kraus, T. Auricular transcutaneous electrical nerve stimulation in depressed patients: A randomized controlled pilot study. J. Neural Transm. 2013, 120, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.A.; Mary, D.A.; Witte, K.K.; Greenwood, J.P.; Deuchars, S.A.; Deuchars, J. Non-invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimul. 2014, 7, 871–877. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response. Int. J. Environ. Res. Public Health 2018, 15, 464. https://doi.org/10.3390/ijerph15030464
Brosschot JF, Verkuil B, Thayer JF. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response. International Journal of Environmental Research and Public Health. 2018; 15(3):464. https://doi.org/10.3390/ijerph15030464
Chicago/Turabian StyleBrosschot, Jos F., Bart Verkuil, and Julian F. Thayer. 2018. "Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response" International Journal of Environmental Research and Public Health 15, no. 3: 464. https://doi.org/10.3390/ijerph15030464
APA StyleBrosschot, J. F., Verkuil, B., & Thayer, J. F. (2018). Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response. International Journal of Environmental Research and Public Health, 15(3), 464. https://doi.org/10.3390/ijerph15030464