The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China
Abstract
:1. Introduction
2. Literature Review
2.1. Literature Concerning the Relationship between Pollutants and Economic Growth
2.2. Research Progress of the GM(1, N) Model
3. Methodology
3.1. Theoretical Hypotheses
3.2. Grey Multivariable Models (GM (1, N))
3.3. Transformed Model of Nonlinear Grey Multivariable Models (TNGM (1, N))
- When , and ;
- When , and ;
- When , and .
- When , and , ;
- When and , ;
- When , and is a row-full-rank matrix, the full-rank decomposition of is
3.4. Parameter Estimation of the Transformed Model of the Nonlinear Grey Multivariable Model Based on NLS(NLS-TNGM (1, N))
4. Empirical Analysis
4.1. The Explanation of Variables and Data
4.2. The Establishment and Solution of the Predication Models
4.2.1. GM (1, N) Model
- WDPC:
- SO2 emissions per capita:
- Dust emissions per capita:
4.2.2. The NLS-TNGM (1, N) Model
- WDPC:
- SO2 emissions per capita:
- Dust emissions per capita:
4.3. Comparison of Modeling Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jerrett, M. Atmospheric science: The death toll from air-pollution sources. Nature 2015, 525, 330. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, X.; Meng, X.; Hua, J.; Zhou, Z.J.; Chen, B.H.; Kan, H.D. Communicating air pollution-related health risks to the public: An application of the Air Quality Health Index in Shanghai, China. Environ. Int. 2013, 51, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.B.; Hammoudeh, S.; Omri, A. Simultaneity modelling analysis of the environmental Kuznets curve hypothesis. Energy Econ. 2016, 60, 266–274. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; World Employment Programmer Research Working Paper; International Labour Organization: Geneva, Switzerland, 1993; pp. 2927–2978. [Google Scholar]
- Lin, B.Q.; Omoju, O.E.; Nwakeze, N.M.; Okonkwo, J.U.; Megbowon, E.T. Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? J. Clean. Prod. 2016, 133, 712–724. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain. Energy Rev. 2015, 47, 175–183. [Google Scholar]
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Raultd, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–345. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Al-Mulali, U. Investigating the validity of the environmental Kuznets curve hypothesis in Cambodia. Ecol. Indic. 2015, 57, 324–330. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 62, 231–239. [Google Scholar] [CrossRef]
- Olugbenga, A.; Owoye, O.O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ. 2014, 44, 47–62. [Google Scholar]
- Akbostanci, E.; Türüt-Aşık, S.; İpek Tunç, G. The relationship between income and environment in Turkey: Is there an environmental Kuznets curve? Energy Policy 2009, 37, 861–867. [Google Scholar] [CrossRef]
- Moutinho, V.; Varum, C.; Madaleno, M. How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors. Energy Policy 2017, 106, 326–344. [Google Scholar] [CrossRef]
- Pablo-Romero, M.D.P.; Jesús, J.D. Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean. Renew. Sustain. Energy Rev. 2016, 60, 1343–1350. [Google Scholar] [CrossRef]
- Shi, B.; Zhao, R.; Ying, Z. Empirical Analysis of Tangshan Economic Growth and Environmental Pollution. Energy Procedia 2011, 5, 2392–2396. [Google Scholar]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y. Regional model of EKC for air pollution: Evidence from the Republic of Korea. Energy Policy 2011, 39, 5840–5849. [Google Scholar] [CrossRef]
- Bimonte, S.; Stabile, A. Land consumption and income in Italy: A case of inverted EKC. Ecol. Econ. 2017, 131, 36–43. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Is there an environmental Kuznets curve for water use? A panel smooth transition regression approach. Econ. Model. 2013, 31, 518–527. [Google Scholar] [CrossRef]
- Deng, J.L. Introduction of grey system. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Pai, T.Y.; Lo, H.M.; Wan, T.J.; Chen, L.; Hung, P.S.; Lo, H.H.; Lai, W.J.; Lee, H.Y. Predicting air pollutant emissions from a medical incinerator using grey model and neural network. Appl. Math. Model. 2015, 39, 1513–1525. [Google Scholar] [CrossRef]
- Hamzacebi, C.; Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 2014, 70, 165–171. [Google Scholar] [CrossRef]
- Xiong, P.P.; Dang, Y.G.; Yao, T.X.; Wang, Z.X. Optimal modeling and forecasting of the energy consumption and production in China. Energy 2014, 77, 623–634. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Wu, J.; Dong, Y. Optimization models based on GM (1, 1) and seasonal fluctuation for electricity demand forecasting. Int. J. Electr. Power Energy Syst. 2012, 43, 109–117. [Google Scholar] [CrossRef]
- Truong, D.Q.; Ahn, K.K. An accurate signal estimator using a novel smart adaptive grey model SAGM (1, 1). Expert Syst. Appl. 2012, 39, 7611–7620. [Google Scholar] [CrossRef]
- Truong, D.Q.; Ahn, K.K. Wave prediction based on a modified grey model MGM (1, 1) for real-time control of wave energy converters in irregular waves. Renew. Energy 2012, 43, 242–255. [Google Scholar] [CrossRef]
- Evans, M. An alternative approach to estimating the parameters of a generalized Grey Verhulst model: An application to steel intensity of use in the UK. Expert Syst. Appl. 2014, 41, 1236–1244. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q.; Shaikh, P.H.; Mirjat, N.H.; Uqaili, M.A. Forecasting China’s natural gas demand based on optimized nonlinear grey models. Energy 2017, 140, 941–951. [Google Scholar] [CrossRef]
- Tien, T.L. A research on the grey prediction model GM (1, N). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Hsu, L.C. Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models. Expert Syst. Appl. 2009, 36, 7898–7903. [Google Scholar] [CrossRef]
- Hsu, L.C.; Wang, C.H. Forecasting integrated circuit output using multivariate grey model and grey relational analysis. Expert Syst. Appl. 2009, 36, 1403–1409. [Google Scholar] [CrossRef]
- Wang, Z.X.; Dang, Y.G.; Zhao, J.J. Integration of Regional Science and Technology Resources Based on GM (1, 3). J. Grey Syst. 2010, 22, 129–136. [Google Scholar]
- Tien, T.L. The deterministic grey dynamic model with convolution integral DGDMC (1, N). Appl. Math. Model. 2009, 33, 3498–3510. [Google Scholar] [CrossRef]
- Tien, T.L. The indirect measurement of tensile strength for a higher temperature by the new model IGDMC (1, N). Measurement 2008, 41, 662–675. [Google Scholar] [CrossRef]
- Tien, T.L. The indirect measurement of tensile strength by the new model FGMC (1, N). Measurement 2011, 44, 1884–1897. [Google Scholar] [CrossRef]
- Zeng, B.; Luo, C.; Li, C.; Liu, S. A novel multi-variable grey forecasting model and its application in forecasting the amount of motor vehicles in Beijing. Comput. Ind. Eng. 2016, 101, 479–489. [Google Scholar] [CrossRef]
- Pei, L.L.; Chen, W.; Bai, J.; Wang, Z. The Improved GM (1, N). Models with Optimal Background Values: A Case Study of Chinese High-tech Industry. J. Grey Syst. 2015, 27, 223–233. [Google Scholar]
- Deng, J.L. Grey modeling in energy-gathering space. J. Grey Syst. 2007, 19, 301–308. [Google Scholar]
- Deng, J.L. On Multi-energy Space: Resource Space. J. Grey Syst. 2009, 21, 1–4. [Google Scholar]
- Ding, S.; Dang, Y.G.; Li, X.M.; Wang, J.J.; Zhao, K. Forecasting Chinese CO2, emissions from fuel combustion using a novel grey multivariable model. J. Clean. Prod. 2017, 162, 1527–1538. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, X.; Forrest, J. A research on a comprehensive adaptive grey prediction model CAGM (1, N). Appl. Math. Comput. 2013, 225, 216–227. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Zhao, J.J.; Li, H.M. Grey system model with time lag and application to simulation of karst spring discharge. Grey Syst. Theory Appl. 2011, 1, 47–56. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M.; Xiao, X. Fractional order accumulation time-lag GM (1, N) model and its application. Syst. Eng. Theory Pract. 2015, 35, 430–436. [Google Scholar]
- Wang, Z.X. Multivariable time-delayed GM (1, N) model and its application. Control Decis. 2015, 30, 2298–2304. [Google Scholar]
- Dang, Y.G.; Wei, L.; Ding, S. Delay multi-variables discrete grey model based on the driving-information control and its application. Control Decis. 2017, 32, 1672–1680. [Google Scholar]
- Ma, X.; Liu, Z.B. The kernel-based nonlinear multivariate grey model. Appl. Math. Model. 2018, 56, 217–238. [Google Scholar] [CrossRef]
- Wang, Z.X. Nonlinear Grey Prediction Model with Convolution Integral NGMC (1, N) and Its Application to the Forecasting of China’s Industrial SO2 Emissions. J. Appl. Math. 2014, 2014, 174–178. [Google Scholar]
- Wang, Z.X.; Ye, D.J. Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J. Clean. Prod. 2016, 142, 600–612. [Google Scholar] [CrossRef]
- Liu, S.F.; Lin, Y. Grey Information Theory and Practical Applications; Springer: London, UK, 2006. [Google Scholar]
- Deng, J.L. The Basis of Grey Theory; Wuhan Huazhong University of Science & Technology Press: Wuhan, China, 2002. [Google Scholar]
- Tzeng, G.H.; Chiang, C.I. Applying possibility regression to grey model. J. Grey Syst. 1998, 1, 19–31. [Google Scholar]
- Liu, S.; Forrest, J.; Yang, Y. Advances in Grey Systems Research; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wang, Z.X. Grey multivariable power model GM (1, N) and its application. Syst. Eng. Theory Pract. 2014, 34, 2357–2363. [Google Scholar]
- Johnson, M.L.; Frasier, S.G. Nonlinear least-squares analysis. Methods Enzymol. 1985, 117, 301–342. [Google Scholar]
- Jiang, Y.Y.; Zou, L.M. Convergence of the Gauss-Seidel Iterative Method. Procedia Eng. 2011, 15, 1647–1650. [Google Scholar]
Year | GDP per Capita (Yuan) | Wastewater Discharge per Capita—WDPC (Ton) | SO2 Emissions per Capita (Ton) | Dust Emissions per Capita (Ton) |
---|---|---|---|---|
1996 | 5539.01 | 32.2193 | 0.0161 | 0.0062 |
1997 | 6375.74 | 33.6343 | 0.0164 | 0.0103 |
1998 | 6921.71 | 32.4432 | 0.0168 | 0.0117 |
1999 | 7319.62 | 32.5936 | 0.0148 | 0.0092 |
2000 | 7778.40 | 32.7592 | 0.0157 | 0.0092 |
2001 | 8545.59 | 33.9270 | 0.0153 | 0.0084 |
2002 | 9449.23 | 34.2148 | 0.0150 | 0.0079 |
2003 | 10,399.56 | 35.5421 | 0.0167 | 0.0081 |
2004 | 11,679.27 | 37.1111 | 0.0173 | 0.0085 |
2005 | 13,823.11 | 40.1511 | 0.0195 | 0.0090 |
2006 | 16,106.53 | 40.8527 | 0.0197 | 0.0083 |
2007 | 19,014.37 | 42.1558 | 0.0187 | 0.0075 |
2008 | 22,370.96 | 43.0716 | 0.0175 | 0.0068 |
2009 | 26,267.77 | 44.1439 | 0.0166 | 0.0064 |
2010 | 28,870.42 | 46.0359 | 0.0163 | 0.0062 |
2011 | 33,654.84 | 48.9251 | 0.0165 | 0.0095 |
2012 | 39,060.42 | 50.5717 | 0.0156 | 0.0091 |
2013 | 42,887.50 | 51.1085 | 0.0150 | 0.0094 |
2014 | 46,833.94 | 52.3589 | 0.0144 | 0.0127 |
2015 | 50,223.99 | 53.4928 | 0.0135 | 0.0112 |
Coefficients | WDPC | SO2 Emissions per Capita | Dust Emissions per Capita |
---|---|---|---|
−0.1971 | −0.18712 | −0.14073 | |
−0.04553 | −0.04268 | −0.03109 |
WDPC | SO2 Emissions per Capita | ||||||||||
Year | Actual Value | GM (1, N) | NLS-TNGM (1, N) | Year | Actual Value | GM (1, N) | NLS-TNGM (1, N) | ||||
Model Value | Error | Model Value | Error | Model Value | Error | Model Value | Error | ||||
1996 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1996 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 |
1997 | 1.04 | 0.20 | 80.65 | 1.01 | 3.49 | 1997 | 1.02 | 0.19 | 81.31 | 1.02 | −0.05 |
1998 | 1.01 | 0.35 | 65.51 | 1.01 | −0.24 | 1998 | 1.04 | 0.33 | 68.29 | 1.04 | 0.62 |
1999 | 1.01 | 0.49 | 51.96 | 1.02 | −1.19 | 1999 | 0.92 | 0.46 | 50.17 | 1.04 | −13.59 |
2000 | 1.02 | 0.62 | 38.83 | 1.04 | −2.74 | 2000 | 0.98 | 0.58 | 41.25 | 1.05 | −6.83 |
2001 | 1.05 | 0.76 | 28.23 | 1.07 | −1.62 | 2001 | 0.95 | 0.69 | 27.34 | 1.05 | −10.21 |
2002 | 1.06 | 0.89 | 16.52 | 1.10 | −3.47 | 2002 | 0.93 | 0.79 | 14.99 | 1.05 | −12.04 |
2003 | 1.10 | 1.01 | 8.05 | 1.13 | −2.47 | 2003 | 1.04 | 0.90 | 13.62 | 1.04 | −0.33 |
2004 | 1.15 | 1.14 | 0.97 | 1.16 | −1.14 | 2004 | 1.08 | 1.01 | 6.78 | 1.04 | 3.82 |
2005 | 1.25 | 1.26 | −1.37 | 1.20 | 3.48 | 2005 | 1.21 | 1.11 | 8.16 | 1.03 | 14.93 |
2006 | 1.27 | 1.38 | −8.73 | 1.24 | 1.92 | 2006 | 1.23 | 1.22 | 0.59 | 1.02 | 16.40 |
2007 | 1.31 | 1.48 | −12.83 | 1.29 | 1.71 | 2007 | 1.16 | 1.30 | −11.44 | 1.02 | 12.44 |
2008 | 1.34 | 1.55 | −16.18 | 1.33 | 0.50 | 2008 | 1.09 | 1.33 | −22.59 | 1.01 | 6.95 |
2009 | 1.37 | 1.60 | −17.07 | 1.38 | −0.42 | 2009 | 1.03 | 1.33 | −28.75 | 1.01 | 2.42 |
2010 | 1.43 | 1.64 | −14.95 | 1.42 | 0.31 | 2010 | 1.01 | 1.30 | −28.05 | 1.00 | 1.09 |
2011 | 1.52 | 1.66 | −9.08 | 1.48 | 2.77 | 2011 | 1.02 | 1.23 | −20.06 | 1.00 | 2.51 |
2012 | 1.57 | 1.64 | −4.46 | 1.53 | 2.42 | 2012 | 0.97 | 1.12 | −14.65 | 0.99 | −2.20 |
2013 | 1.59 | 1.60 | −0.74 | 1.59 | −0.17 | 2013 | 0.93 | 0.96 | −3.12 | 0.99 | −6.00 |
2014 | 1.63 | 1.53 | 5.88 | 1.65 | −1.42 | 2014 | 0.90 | 0.77 | 13.76 | 0.99 | −9.91 |
2015 | 1.66 | 1.44 | 13.24 | 1.71 | −2.97 | 2015 | 0.84 | 0.55 | 34.62 | 0.98 | −16.86 |
MAPE | 20.80 | 1.72 | 25.77 | 7.33 | |||||||
Dust Emissions per Capita | Dust Emissions per Capita | ||||||||||
Year | Actual Value | GM (1, N) | NLS-TNGM (1, N) | Year | Actual Value | GM (1, N) | NLS-TNGM (1, N) | ||||
Model Value | Error | Model Value | Error | Model Value | Error | Model Value | Error | ||||
1996 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 2006 | 1.34 | 1.52 | −13.69 | 1.33 | 0.84 |
1997 | 1.66 | 0.19 | 88.52 | 1.91 | −14.74 | 2007 | 1.21 | 1.59 | −32.08 | 1.34 | −11.50 |
1998 | 1.88 | 0.40 | 78.68 | 1.59 | 15.43 | 2008 | 1.10 | 1.63 | −48.59 | 1.36 | −24.14 |
1999 | 1.49 | 0.60 | 59.83 | 1.45 | 2.78 | 2009 | 1.03 | 1.63 | −59.01 | 1.38 | −34.24 |
2000 | 1.48 | 0.76 | 48.60 | 1.37 | 7.96 | 2010 | 1.00 | 1.61 | −61.44 | 1.40 | −39.87 |
2001 | 1.35 | 0.91 | 32.42 | 1.32 | 2.34 | 2011 | 1.53 | 1.60 | −4.47 | 1.43 | 6.57 |
2002 | 1.27 | 1.05 | 17.80 | 1.30 | −1.82 | 2012 | 1.47 | 1.59 | −8.12 | 1.48 | −0.59 |
2003 | 1.31 | 1.17 | 10.72 | 1.29 | 1.79 | 2013 | 1.52 | 1.56 | −3.05 | 1.54 | −1.28 |
2004 | 1.37 | 1.29 | 5.37 | 1.29 | 5.46 | 2014 | 2.05 | 1.55 | 24.50 | 1.61 | 21.73 |
2005 | 1.46 | 1.41 | 3.19 | 1.31 | 10.58 | 2015 | 1.81 | 1.54 | 14.69 | 1.69 | 6.41 |
MAPE | 32.36 | 11.06 |
Coefficients | WDPC | SO2 Emissions per Capita | Dust Emissions per Capita |
---|---|---|---|
−0.042633 | 0.017207 | −0.052495 | |
1.016804 | 0.995608 | 2.776413 | |
−0.098991 | 0.06658 | −0.557439 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.-L.; Li, Q.; Wang, Z.-X. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China. Int. J. Environ. Res. Public Health 2018, 15, 471. https://doi.org/10.3390/ijerph15030471
Pei L-L, Li Q, Wang Z-X. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China. International Journal of Environmental Research and Public Health. 2018; 15(3):471. https://doi.org/10.3390/ijerph15030471
Chicago/Turabian StylePei, Ling-Ling, Qin Li, and Zheng-Xin Wang. 2018. "The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China" International Journal of Environmental Research and Public Health 15, no. 3: 471. https://doi.org/10.3390/ijerph15030471
APA StylePei, L. -L., Li, Q., & Wang, Z. -X. (2018). The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China. International Journal of Environmental Research and Public Health, 15(3), 471. https://doi.org/10.3390/ijerph15030471