Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways
Abstract
:1. Introduction
2. Current State of Practice
2.1. Shared Socioeconomic Pathways—SSPs
2.2. Extended SSPs
2.3. Integration within Climate-Related Health Impact Assessments
2.4. Research Gaps and Needs
3. Methods to Project Drivers of Human Vulnerability
3.1. Existing Methods
3.1.1. Use of Sectoral Models
3.1.2. Spatial Disaggregation
3.2. Scenario Matching
- ET2050 comprises four scenarios of territorial development and cohesion in Europe [118] that have been quantified for variables related to urbanization, accessibility, and transport nodes, at the sub-national level [119]. The four scenarios are named Baseline (Base), MEGAS (A), Regions (B), and Cities (C).
- DEMIFER is made up of five European demographic scenarios [120] that have been quantified for a number of key demographic and lifestyle variables such as labor force, ageing, employment, life expectancy, and different types of migration, at sub-national level [121]. The five scenarios are named Status Quo (STQ), Growing Social Europe (GSE), Expanding Market Europe (EME), Limited Social Europe (LSE), and Challenged Market Europe (CME).
- CLIMSAVE comprises four cross-sectoral European scenarios [122,123,124] that have been quantified for variables related to ecosystems services and provisions and environmental conditions, at high spatial resolution (16 × 16 km) [125]. The four scenarios are named We are the World (WW), Icarus (Ica), Riders on the Storm (RS), and Should I stay or Should I go (SSG).
3.3. Experts’ Elicitation and Correlation Analyses
3.3.1. Determination of Local Trends
3.3.2. Quantification of the Local Trends Based on Experts’ Elicitation
3.3.3. Final Projections
4. Discussion
4.1. Addressing the Research Needs
4.2. Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- De Sherbinin, A. Climate change hotspots mapping: What have we learned? Clim. Chang. 2014, 123, 23–37. [Google Scholar] [CrossRef]
- Ebi, K.L.; Hess, J.J.; Isaksen, T.B. Using uncertain climate and development information in health adaptation planning. Curr. Environ. Health Rep. 2016, 3, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Preston, B.L.; Yuen, E.J.; Westaway, R.M. Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustain. Sci. 2011, 6, 177–202. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dao, H.; Van Maarseveen, M. Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways. Clim. Chang. 2018. under review. [Google Scholar]
- Jurgilevich, A.; Räsänen, A.; Groundstroem, F.; Juhola, S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ. Res. Lett. 2017, 12, 013002. [Google Scholar] [CrossRef]
- UKCIP. Socioeconomic Scenarios for Climate Change Impact Assessment: A Guide to Their Use in the UK Climate Impacts Programme; UKCIP: Oxford, UK, 2000. [Google Scholar]
- Lorenzoni, I.; Jordan, A.; Hulme, M.; Turner, R.K.; O’Riordan, T. A co-evolutionary approach to climate change impact assessment: Part I: Integrating socio-economic and climate change scenarios. Glob. Environ. Chang. 2000, 10, 57–68. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Birkmann, J.; Cutter, S.L.; Rothman, D.S.; Welle, T.; Garschagen, M.; van Ruijven, B.; O’Neill, B.; Preston, B.L.; Kienberger, S.; Cardona, O.D.; et al. Scenarios for vulnerability: Opportunities and constraints in the context of climate change and disaster risk. Clim. Chang. 2013, 133, 53–68. [Google Scholar] [CrossRef]
- Garschagen, M.; Kraas, F. Assessing future resilience to natural hazards—The challenges of capturing dynamic changes under conditions of transformations and climate change. In Proceedings of the International Disaster and Risk Conference, Davos, Switzerland, 30 May–3 June 2010. [Google Scholar]
- Dilling, L.; Daly, M.E.; Travis, W.R.; Wilhelmi, O.V.; Klein, R.A. The dynamics of vulnerability: Why adapting to climate variability will not always prepare us for climate change. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 413–425. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2013, 122, 387–400. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Kriegler, E.; O’Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; et al. A new scenario framework for climate change research: Scenario matrix architecture. Clim. Chang. 2013, 122, 373–386. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of the Working Group I and II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Lutz, W.; Muttarak, R. Forecasting societies’ adaptive capacities through a demographic metabolism model. Nat. Clim. Chang. 2017, 7, 177–184. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Pedde, S.; Dao, H.; Van Maarseveen, M. Influence of changes in socioeconomic and climatic conditions on future heat-related health challenges in Europe. Glob. Planet. Chang. 2018. under review. [Google Scholar]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Lempert, R.J.; Janetos, A.C. A framework for the development of new socio-economic scenarios for climate change research: Introductory essay. Clim. Chang. 2014, 122, 351–361. [Google Scholar] [CrossRef]
- Ebi, K.L.; Kram, T.; van Vuuren, D.P.; O’Neill, B.C.; Kriegler, E. A new toolkit for developing scenarios for climate change research and policy analysis. Environment 2014, 56, 6–16. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Carter, T.R. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Clim. Chang. 2013, 122, 415–429. [Google Scholar] [CrossRef]
- Kriegler, E.; O’Neill, B.C.; Hallegatte, S.; Kram, T.; Lempert, R.J.; Moss, R.H.; Wilbanks, T. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob. Environ. Chang. 2012, 22, 807–822. [Google Scholar] [CrossRef]
- Schweizer, V.J.; O’Neill, B.C. Systematic construction of global socioeconomic pathways using internally consistent element combinations. Clim. Chang. 2013, 122, 431–445. [Google Scholar] [CrossRef]
- IIASA. Shared Socioeconomic Pathways Database, Version 1.1. Available online: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about (accessed on 5 February 2018).
- Kc, S.; Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KC, S.; Lutz, W. Demographic scenarios by age, sex and education corresponding to the ssp narratives. Popul. Environ. 2014, 35, 243–260. [Google Scholar] [CrossRef]
- Jiang, L.; O’Neill, B.C. Global urbanization projections for the shared socioeconomic pathways. Glob. Environ. Chang. 2017, 42, 193–199. [Google Scholar] [CrossRef]
- Crespo Cuaresma, J. Income projections for climate change research: A framework based on human capital dynamics. Glob. Environ. Chang. 2017, 42, 226–236. [Google Scholar] [CrossRef]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Chang. 2017, 42, 200–214. [Google Scholar] [CrossRef]
- Leimbach, M.; Kriegler, E.; Roming, N.; Schwanitz, J. Future growth patterns of world regions—A GDP scenario approach. Glob. Environ. Chang. 2017, 42, 215–225. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Velders, G.J.M.; Fahey, D.W.; Daniel, J.S.; Andersen, S.O.; McFarland, M. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmos. Environ. 2015, 123, 200–209. [Google Scholar] [CrossRef]
- Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D.E.H.J.; Guivarch, C.; Havlik, P.; Huppmann, D.; et al. Sensitivity of projected long-term CO2 emissions across the shared socioeconomic pathways. Nat. Clim. Chang. 2017, 7, 113–117. [Google Scholar] [CrossRef]
- Guivarch, C.; Rozenberg, J.; Schweizer, V. The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database. Environ. Modell. Softw. 2016, 80, 336–353. [Google Scholar] [CrossRef]
- Böhmelt, T. Employing the shared socioeconomic pathways to predict CO2 emissions. Environ. Sci. Policy 2017, 75, 56–64. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; Levy, M.A.; Agrawal, A.; Biermann, F.; Birkmann, J.; Carter, T.R.; Ebi, K.L.; Garschagen, M.; Jones, B.; Jones, R.; et al. Enhancing the relevance of shared socioeconomic pathways for climate change impacts, adaptation and vulnerability research. Clim. Chang. 2013, 122, 481–494. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Env. Res. Lett. 2016, 11, 084003. [Google Scholar] [CrossRef]
- Murakami, D.; Yamagata, Y. Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling. 2016. Available online: https://arxiv.org/abs/1610.09041 (accessed on 5 February 2018).
- Merkens, J.-L.; Reimann, L.; Hinkel, J.; Vafeidis, A.T. Gridded population projections for the coastal zone under the shared socioeconomic pathways. Glob. Planet. Chang. 2016, 145, 57–66. [Google Scholar] [CrossRef]
- Reimann, L.; Merkens, J.-L.; Vafeidis, A.T. Regionalized shared socioeconomic pathways: Narratives and spatial population projections for the mediterranean coastal zone. Reg. Environ. Chang. 2018, 18, 235–245. [Google Scholar] [CrossRef]
- Hoornweg, D.; Pope, K. Population predictions for the worlds largest cities in the 21st century. Environ. Urban. 2017, 29, 195–216. [Google Scholar] [CrossRef]
- Ebi, K.L. Health in the new scenarios for climate change research. Int. J. Environ. Res. Public Health 2013, 11, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Sellers, S.; Ebi, K.L. Climate change and health under the shared socioeconomic pathway framework. Int. J. Environ. Res. Public Health 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The water futures and solutions (WFAS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Yao, M.; Tramberend, S.; Kabat, P.; Hutjes, R.W.A.; Werners, S.E. Building regional water-use scenarios consistent with global shared socioeconomic pathways. Environ. Process. 2017, 4, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Maury, O.; Campling, L.; Arrizabalaga, H.; Aumont, O.; Bopp, L.; Merino, G.; Squires, D.; Cheung, W.; Goujon, M.; Guivarch, C.; et al. From shared socio-economic pathways (SSPs) to oceanic system pathways (OSPs): Building policy-relevant scenarios for global oceanic ecosystems and fisheries. Glob. Environ. Chang. 2017, 45, 203–216. [Google Scholar] [CrossRef]
- Kemp-Benedict, E.; de Jong, W.; Pacheco, P. Forest futures: Linking global paths to local conditions. In Forests under Pressures: Local Responses to Global Issues; Katila, P., Galloway, G., de Jong, W., Pacheco, P., Mery, G., Eds.; International Union of Forest Research Organization: Vienna, Austria, 2014. [Google Scholar]
- Hasegawa, T.; Fujimori, S.; Takahashi, K.; Masui, T. Scenarios for the risk of hunger in the twenty-first century using shared socioeconomic pathways. Env. Res. Lett. 2015, 10, 014010. [Google Scholar] [CrossRef]
- Palazzo, A.; Vervoort, J.M.; Mason-D’Croz, D.; Rutting, L.; Havlík, P.; Islam, S.; Bayala, J.; Valin, H.; Kadi Kadi, H.A.; Thornton, P.; et al. Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified west african food and climate futures in a global context. Glob. Environ. Chang. 2017, 45, 227–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason-D’Croz, D.; Vervoort, J.; Palazzo, A.; Islam, S.; Lord, S.; Helfgott, A.; Havlík, P.; Peou, R.; Sassen, M.; Veeger, M.; et al. Multi-factor, multi-state, multi-model scenarios: Exploring food and climate futures for southeast asia. Environ. Model. Softw. 2016, 83, 255–270. [Google Scholar] [CrossRef]
- Nilsson, A.E.; Bay-Larsen, I.; Carlsen, H.; van Oort, B.; Bjørkan, M.; Jylhä, K.; Klyuchnikova, E.; Masloboev, V.; van der Watt, L.-M. Towards extended shared socioeconomic pathways: A combined participatory bottom-up and top-down methodology with results from the barents region. Glob. Environ. Chang. 2017, 45, 124–132. [Google Scholar] [CrossRef]
- Nilsson, A.E.; Carlsen, H.; van der Watt, L.-M. Uncertain Futures: The Changing Global Context of the European Arctic; SEI Working Paper 2015-12; Stockholm Environment Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Kamei, M.; Hanaki, K.; Kurisu, K. Tokyo’s long-term socioeconomic pathways: Towards a sustainable future. Sustain. Cities Soc. 2016, 27, 73–82. [Google Scholar] [CrossRef]
- Kok, K.; Pedde, S. IMPRESSIONS Socio-Economic Scenarios for All Case-Studies; EU FP7 IMPRESSIONS Project Deliverable D2.2; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Absar, S.M.; Preston, B.L. Extending the shared socioeconomic pathways for sub-national impacts, adaptation, and vulnerability studies. Glob. Environ. Chang. 2015, 33, 83–96. [Google Scholar] [CrossRef]
- Kok, K.; Pedde, S.; Jäger, J.; Harrison, P.A. European Shared Socioeconomic Pathways; EU FP7 IMPRESSIONS Project; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Rothman, D.S.; Romero-Lankao, P.; Schweizer, V.J.; Bee, B.A. Challenges to adaptation: A fundamental concept for the shared socio-economic pathways and beyond. Clim. Chang. 2013, 122, 495–507. [Google Scholar] [CrossRef]
- Hunter, L.M.; O’Neill, B.C. Enhancing engagement between the population, environment, and climate research communities: The shared socio-economic pathway process. Popul. Environ. 2014, 35, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Wilbanks, T.J.; Ebi, K.L. Ssps from an impact and adaptation perspective. Clim. Chang. 2014, 122, 473–479. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Shin, Y.; Takahashi, K.; Masui, T.; Tanaka, A. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ. Sci. Technol. 2014, 48, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Fujimori, S.; Takahashi, K.; Yokohata, T.; Masui, T. Economic implications of climate change impacts on human health through undernourishment. Clim. Chang. 2016, 136, 189–202. [Google Scholar] [CrossRef]
- Ishida, H.; Kobayashi, S.; Kanae, S.; Hasegawa, T.; Fujimori, S.; Shin, Y.; Takahashi, K.; Masui, T.; Tanaka, A.; Honda, Y. Global-scale projection and its sensitivity analysis of the health burden attributable to childhood undernutrition under the latest scenario framework for climate change research. Env. Res. Lett. 2014, 9, 064014. [Google Scholar] [CrossRef]
- Biewald, A.; Lotze-Campen, H.; Otto, I.; Brinckmann, N.; Bodirsky, B.; Weindl, I.; Popp, A.; Schellnhuber, H.J. The Impact of Climate Change on Costs of Food and People Exposed to Hunger at Subnational Scale; PIK Report n° 128; Potsdam Institute for Climate Impact Research: Potsdam, Germany, 2015. [Google Scholar]
- Wiebe, K.; Lotze-Campen, H.; Sands, R.; Tabeau, A.; van der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Mason-D’Croz, D.; et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Env. Res. Lett. 2015, 10, 085010. [Google Scholar] [CrossRef]
- Davenport, F.; Grace, K.; Funk, C.; Shukla, S. Child health outcomes in sub-saharan africa: A comparison of changes in climate and socio-economic factors. Glob. Environ. Chang. 2017, 46, 72–87. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, H.C.J.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and regional health effects of future food production under climate change: A modelling study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Knorr, W.; Arneth, A.; Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Chang. 2016, 6, 781–785. [Google Scholar] [CrossRef]
- Monaghan, A.J.; Sampson, K.M.; Steinhoff, D.F.; Ernst, K.C.; Ebi, K.L.; Jones, B.; Hayden, M.H. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito aedes aegypti. Clim. Chang. 2018, 146, 487–500. [Google Scholar] [CrossRef]
- Suk, J.E. Climate change, malaria, and public health: Accounting for socioeconomic contexts in past debates and future research. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 551–568. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Pan, T.; Liu, Y.; Sun, F.; Ge, Q. Population exposure to droughts in china under 1.5 °C global warming target. Earth Syst. Dynam. Discuss. 2017, 1–13. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J. Towards a global water scarcity risk assessment framework: Incorporation of probability distributions and hydro-climatic variability. Env. Res. Lett. 2016, 11, 024006. [Google Scholar] [CrossRef]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under shared socio-economic pathways—Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 2013, 17, 2393–2413. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Chang. 2013, 122, 127–140. [Google Scholar] [CrossRef]
- Parkinson, S.C.; Johnson, N.; Rao, N.D.; Jones, B.; van Vliet, M.T.H.; Fricko, O.; Djilali, N.; Riahi, K.; Flörke, M. Climate and human development impacts on municipal water demand: A spatially-explicit global modeling framework. Environ. Model. Softw. 2016, 85, 266–278. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Betts, R.A. Freshwater vulnerability under high end climate change. A pan-european assessment. Sci. Total Environ. 2018, 613–614, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed]
- Jongman, B.; Winsemius, H.C.; Aerts, J.C.; Coughlan de Perez, E.; van Aalst, M.K.; Kron, W.; Ward, P.J. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl. Acad. Sci. USA 2015, 112, E2271–E2280. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, L.; Feyen, L.; Di Baldassarre, G. Increasing flood risk under climate change: A pan-european assessment of the benefits of four adaptation strategies. Clim. Chang. 2016, 136, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lamarque, J.-F.; Sanderson, B.M. The importance of aerosol scenarios in projections of future heat extremes. Clim. Chang. 2018, 146, 393–406. [Google Scholar] [CrossRef]
- Knorr, W.; Dentener, F.; Lamarque, J.-F.; Jiang, L.; Arneth, A. Wildfire air pollution hazard during the 21st century. Atmos. Chem. Phys. 2017, 17, 9223–9236. [Google Scholar] [CrossRef]
- Anderson, G.B.; Oleson, K.W.; Jones, B.; Peng, R.D. Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities. Clim. Chang. 2018, 146, 455–470. [Google Scholar] [CrossRef]
- Liu, Z.; Anderson, B.; Yan, K.; Dong, W.; Liao, H.; Shi, P. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Sci. Rep. 2017, 7, 43909. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Liu, Z.; Liao, H.; Tang, Q.; Li, X.E. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim. Chang. 2015, 130, 505–518. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dao, H. Assessment of future heat stress risk in european regions: Towards a better integration of socioeconomic scenarios. GI_Forum 2017, 1, 341–351. [Google Scholar] [CrossRef]
- Matthews, T.K.R.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Freyberg, C.; Lemke, B.; Otto, M.; Briggs, D. Estimating population heat exposure and impacts on working people in conjunction with climate change. Int. J. Biometeorol. 2018, 62, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Horton, R.M.; Bader, D.A.; Lesk, C.; Jiang, L.; Jones, B.; Zhou, L.; Chen, X.; Bi, J.; Kinney, P.L. Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ. Pollut. 2017, 224, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Marsha, A.; Sain, S.R.; Heaton, M.J.; Monaghan, A.J.; Wilhelmi, O.V. Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Clim. Chang. 2018, 146, 471–485. [Google Scholar] [CrossRef]
- Dholakia, H.H.; Mishra, A.K.; Garg, A. Predicted Increases in Heat Related Mortality under Climate Change in Urban India; IIM Working Paper; Indian Institute of Management: Ahmedabad, India, 2015. [Google Scholar]
- Mishra, V.; Mukherjee, S.; Kumar, R.; Stone, D. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Env. Res. Lett. 2017, 12, 124012. [Google Scholar] [CrossRef]
- Coffel, E.D.; Radley, H.; de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 2018, 13, 014001. [Google Scholar] [CrossRef]
- Astrom, C.; Astrom, D.O.; Andersson, C.; Ebi, K.L.; Forsberg, B. Vulnerability reduction needed to maintain current burdens of heat-related mortality in a changing climate-magnitude and determinants. Int. J. Environ. Res. Public Health 2017, 14, 741. [Google Scholar] [CrossRef]
- Jones, B.; Tebaldi, C.; O’Neill, B.C.; Oleson, K.; Gao, J. Avoiding population exposure to heat-related extremes: Demographic change vs climate change. Clim. Chang. 2018, 146, 423–437. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. Euro-cordex: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Suk, J.E.; Ebi, K.L.; Vose, D.; Wint, W.; Alexander, N.; Mintiens, K.; Semenza, J.C. Indicators for tracking European vulnerabilities to the risks of infectious disease transmission due to climate change. Int. J. Environ. Res. Public Health 2014, 11, 2218–2235. [Google Scholar] [CrossRef] [PubMed]
- Toimil, A.; Losada, I.J.; Díaz-Simal, P.; Izaguirre, C.; Camus, P. Multi-sectoral, high-resolution assessment of climate change consequences of coastal flooding. Clim. Chang. 2017, 145, 431–444. [Google Scholar] [CrossRef]
- Van der Mensbrugghe, D. Shared Socioeconomic Pathways and global income distribution. In Proceedings of the 18th Annual Conference on Global Economic Analysis, Melbourne, Australia, 17–19 June 2015. [Google Scholar]
- Terama, E.; Clarke, E.; Rounsevell, M.D.A.; Fronzek, S.; Carter, T.R. Modelling population structure in the context of urban land use change in europe. Reg. Environ. Chang. 2017, 1–11. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Biewald, A.; Pehl, M.; Bonsch, M.; Baumstark, L.; Klein, D.; Popp, A.; Luderer, G.; Kriegler, E. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 2016, 64, 48–58. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Kanamori, Y.; Dai, H.; Masui, T. An impact assessment of sustainable technologies for the chinese urban residential sector at provincial level. Environ. Res. Lett. 2015, 10, 065001. [Google Scholar] [CrossRef]
- Hurth, F.; Lückenkötter, J.; Schonlau, M. European GDP Projections for 2015–2060: 10-km Gridded Data Based on Shared Socioeconomic Pathways (SSPs); IRPUD, TU Dortmund University: Dortmund, Germany, 2017. [Google Scholar]
- Lückenkötter, J.; Hurth, F.; Schonlau, M. European Population Projections for 2015–2060: 10-km Gridded Data Based on the Shared Socioeconomic Pathways (SSPs); IRPUD, TU Dortmund University: Dortmund, Germany, 2017. [Google Scholar]
- Batista e Silva, F.; Dijkstra, L.; Martinez, P.V.; Lavalle, C. Regionalisation of Demographic and Economic Projections—Trend and Convergence Scenarios from 2015 to 2016; JRC Science for Policy Report, EUR-27924; Joint Research Center of the European Commission: Ispra, Italy, 2016. [Google Scholar]
- Hunt, D.V.L.; Lombardi, D.R.; Atkinson, S.; Barber, A.R.G.; Barnes, M.; Boyko, C.T.; Brown, J.; Bryson, J.; Butler, D.; Caputo, S.; et al. Scenario archetypes: Converging rather than diverging themes. Sustainability 2012, 4, 740–772. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.C.; Feyen, L.; Hochrainer-Stigler, S.; Brenden, J.; Hudson, P.; Veldkamp, T.I.E. Inventory of Existing Risk Scenarios; ENHANCE Project Deliverable D3.1; IVM: Amsterdam, The Netherlands, 2013. [Google Scholar]
- EEA. Knowledge Base for Forward-Looking Information and Services: Catalogue of Scenario Studies; EEA Technical Report n° 1-2011; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Ulied, A.; Biosca, O.; Rodrigol, R. Forecast and Quantitative Scenarios, as Evolution of the Qualitative; PASHMINA Project Deliverable D1.2; MCRIT: Barcelona, Spain, 2010. [Google Scholar]
- Rothman, D.S. A survey of environmental scenarios. In Environmental Futures: The Practice of Environmental Scenario Analysis; Alcamo, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Kok, K.; Christensens, J.H.; Madsen, M.S.; Pedde, S.; Gramberger, M.; Jäger, J.; Carter, T.R. Evaluation of Existing Climate and Socio-Economic Scenarios Including a Detailed Description of the Final Selection; EU FP7 IMPRESSIONS Project Deliverable D2.1; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- EEA. Climate Change, Impacts and Vulnerability in Europe 2016—An Indicator-Based Report; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- Van Vuuren, D.P.; Kok, M.T.J.; Girod, B.; Lucas, P.L.; de Vries, B. Scenarios in global environmental assessments: Key characteristics and lessons for future use. Glob. Environ. Chang. 2012, 22, 884–895. [Google Scholar] [CrossRef]
- Westhoek, H.J.; van den Berg, M.; Bakkes, J.A. Scenario development to explore the future of Europe’s rural areas. Agric. Ecosyst. Environ. 2006, 114, 7–20. [Google Scholar] [CrossRef]
- Kok, K.; Pedde, S.; Gramberger, M.; Harrison, P.A.; Holman, I. New European socio-economic scenarios for climate change research: Operationalising concepts to extended the Shared Socioeconomic Pathways. Reg. Environ. Chang. 2018. under review. [Google Scholar]
- MCRIT. Approach to Scenario Building and Storylines; ESPON ET2050 Territorial Scenarios and Visions for Europe; European Commission: Brussels, Belgium, 2014; Volume 1. [Google Scholar]
- Ulied, A.; Robert, J.; Biot, V.; Illes, I.; Camagni, R.; Capello, C.; Kupiszewska, D.; Kupiszewska, M.; Spiekermann, K.; Wegener, M.; et al. Territorial Scenarios and Visions for Europe; ESPON ET2050 Territorial Scenarios and Visions for Europe, Final Report; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Rees, P.; Boden, P.; Dennett, A.; Stillwell, J.; Jasinska, M.; de Jong, A.; ter Veer, M. Report on Scenarios and a Database of Scenario Drivers; ESPON DEMIFER Project Deliverable D6; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Rees, P.; van der Gaag, N.; De Beer, J.; Heins, F. European regional populations: Current trends, future pathways, and policy options. Eur. J. Popul. 2012, 28, 385–416. [Google Scholar] [CrossRef] [PubMed]
- Gramberger, M.; Harrison, P.A.; Jager, J.; Kok, K.; Libbrecht, S.; Maes, M.; Metzger, K.B.; Stuch, B.; Watson, M. Report on the Third CLIMSAVE European Stakeholder Workshop. Available online: http://www.climsave.eu/climsave/doc/Report_on_the_third_European_workshop.pdf (accessed on 5 February 2018).
- Gramberger, M.; Kok, K.; Maes, M.; Stuch, B.; Harrison, P.A.; Jager, J.; Metzger, K.B.; Kebede, A.S. Report on the Second CLIMSAVE European Stakeholder Workshop. Available online: http://www.climsave.eu/climsave/doc/Report_on_the_second_European_workshop.pdf (accessed on 5 February 2018).
- Kok, K.; Gramberger, M.; Zellmer, K.; Simon, K.H.; Jager, J.; Omann, I. Report on the New Methodology for Scenario Analysis and Based on an Analysis of Past Scenario Exercises. Available online: http://www.climsave.eu/climsave/doc/Report_on_the_scenario_methodology_updated.pdf (accessed on 5 February 2018).
- Holman, I.; Cojocaru, G.; Harrison, P.A. Guidance Report Describing the Final Version of the CLIMSAVE Integrated Assessment Platform. Available online: http://www.climsave.eu/climsave/doc/Report_on_the_Final_IA_Platform.pdf (accessed on 5 February 2018).
- Semenza, J.C.; McCullough, J.E.; Flanders, W.D.; McGeehin, M.A.; Lumpkin, J.R. Excess hospital admissions during the July 1995 heat wave in Chicago. Am. J. Prev. Med. 1999, 16, 269–277. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E.; Hemon, D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 2006, 80, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Riberon, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 heat wave in France: Risk factors for death of elderly people living at home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Romero-Lankao, P.; Qin, H.; Dickinson, K. Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Glob. Environ. Chang. 2012, 22, 670–683. [Google Scholar] [CrossRef]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [Google Scholar] [CrossRef]
- Schwartz, J. Who is sensitive to extremes of temperature?: A case-only analysis. Epidemiology 2005, 16, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. Can. Med. Assoc. J. 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Alders, M.P.C.; Manting, D. Household scenarios for the European Union, 1995–2025. Genus 2001, 57, 17–47. [Google Scholar]
- Doblhammer, G.; Ziegler, U. Future elderly living conditions in Europe: Demographic insights. In Gender, Health and Ageing: European Perspectives on Life Course, Health Issues and Social Challenges; Backes, G.M., Lasch, V., Reimann, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2006. [Google Scholar]
- Fokkema, T.; Liefbroer, A.C. Trends in living arrangements in Europe: Convergence or divergence? Demogr. Res. 2008, 19, 1351–1418. [Google Scholar] [CrossRef]
- Gaymu, J.; Ekamper, P.; Beets, G. Future trends in health and marital status: Effects on the structure of living arrangements of older Europeans in 2030. Eur. J. Ageing 2008, 5, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Eierdanz, F.; Alcamo, J.; Acosta-Michlik, L.; Krömker, D.; Tänzler, D. Using fuzzy set theory to address the uncertainty of susceptibility to drought. Reg. Environ. Chang. 2008, 8, 197–205. [Google Scholar] [CrossRef]
- Pedde, S.; Kok, K.; Onigkeit, J.; Brown, C.; Holman, I.; Harrison, P.A. Bridging uncertainty concepts across narratives and simulations in environmental scenarios. Reg. Environ. Chang. 2018. under review. [Google Scholar]
- Eurostat. Health: Health Status and Determinants Data. Available online: http://ec.europa.eu/eurostat/web/health/health-status-determinants (accessed on 5 February 2018).
- Terama, E. European Regional—NUTS2-Level—Population Projections with Age Structure across SSPs. Available online: https://dx.doi.org/10.6084/m9.figshare.3806478.v1 (accessed on 5 February 2018).
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Chang. 2016, 137, 105–119. [Google Scholar] [CrossRef]
- Paci, D. Human Health Impacts of Climate Change in Europe; JRC Technical Report for the PESETA II Project, EUR-2649EN; Joint Research Center: Ispra, Italy, 2014. [Google Scholar]
- Rozell, D. Using population projections in climate change analysis. Clim. Chang. 2017, 142, 521–529. [Google Scholar] [CrossRef]
- Mallampalli, V.R.; Mavrommati, G.; Thompson, J.; Duveneck, M.; Meyer, S.; Ligmann-Zielinska, A.; Druschke, C.G.; Hychka, K.; Kenney, M.A.; Kok, K.; et al. Methods for translating narrative scenarios into quantitative assessments of land use change. Environ. Model. Softw. 2016, 82, 7–20. [Google Scholar] [CrossRef]
- Rao, N.D.; van Ruijven, B.J.; Riahi, K.; Bosetti, V. Improving poverty and inequality modelling in climate research. Nat. Clim. Chang. 2017, 7, 857–862. [Google Scholar] [CrossRef]
Study | Statement |
---|---|
[92] | “[…] this study utilized SSP national-level demographic and economic projections rather than city-specific projections of Houston because SSP-based projections were unavailable for the city. The national-level SSP projections […] are likely inaccurate given the city’s rapid growth of racially and ethnically diverse populations.” |
[84] | “The health impacts of heat vary by personal susceptibility factors like age, and heat effects might be compounded by concurrent exposures like high air pollution or power outages. Future research could explore [….] whether such characteristics could be projected for future heatwaves with enough resolution to be usefully incorporated into projections.” |
[95] | “Our initial exploration of a potentially transformative risk factor for humans only considers population exposure. However, the impacts of heat on humans depend on both exposure and vulnerability, with the latter depending on many other factors including population age, degree and type of pre-existing health conditions, […]. The SSPs may offer a means of exploring potentially critical correlations between heat, population density, vulnerability, and the potential for adaptation.” |
[85] | “[…] in this work we only analyzed the change in exposure to extreme heat as a function of a change in the hazard […] and population. To properly estimate a change in risk of mortality/morbidity resulting from this exposure, demographic and socioeconomic characteristics such as age, gender, per capita income and education level should be included into the analysis. However, since projections of these characteristics tend to be relatively coarse and of low confidence, we have not included the demographic and socioeconomic factors in our analysis.” |
[97] | “Finally, quantifying exposure is a starting point for estimating future risks, but further work is necessary on vulnerability to the impacts of extreme heat, including population age structure and income, as well as possible changes in social and institutional factors over time, which will play important roles in heat-related impacts.” |
[94] | “SSP3 assumes a fragmented world following varied regional social, political, and economic pathways. This may be considered difficult to reconcile with the international collaborative effort that would be required in order to keep the global temperature from exceeding 1.5 °C. However, we consider it here on the grounds that what applies as a general rule globally does not necessarily need to apply for India itself (notwithstanding India’s outsized contribution to world population), and that having a population scenario that spans a larger range will allow a more expanded study of the relation between heatwaves, national population, and MPEHWd.” |
[91] | “[…] the lethality of deadly climatic conditions can be mediated by various demographic (for example, age structure), socio-economic (for example, air conditioning, early warning systems) and urban planning (for example, vegetation, high albedo surface) factors that were not considered in our study. Consideration of these factors would improve the understanding of global human vulnerability to heat exposure […].” |
[71] | “Other study limitations are related to human and mosquito behavior. […] how human interventions aimed at reducing Ae. Aegypti populations may change in the future is unknown. For example, controversial releases of genetically-modified ‘sterile’ male mosquitoes may become more common in the future, and, if they do, would differ between the SSPs. Additionally, how other human factors such as cultural practices, water access, urbanization, transportation networks and global trade may evolve and impact the spread of Ae. aegypti is unclear.” |
[76] | “[…] the SSP characterizations are preliminary. […] only simple indicators of changes in exposure to water resources scarcity and river flood frequency are used. These indicators consider only population, and do not incorporate other differences between socio-economic scenarios such as differences in water withdrawals or rate of urbanization. Including such additional dimensions would increase the differences between the SSPs. Future assessments should include more sophisticated measures of exposure and impact […].” |
[73] | “In future studies, we would like to account for more demographic characteristics in addition to growth, i.e., age, sex, education, and income, which are likely to be stronger factors for demographic change in the 1.5 ºC target. However, we currently lack the required sophisticated data.” |
[75] | “[…] we used a simplistic model to estimate industrial and municipal water use. Progress in this area of modeling has long been obstructed by a lack of data, but further efforts are needed. […] the water use scenario that is used significantly affects the results; hence further efforts are needed to establish consistent scenarios.” |
[74] | “To come to a full risk assessment framework more work needs to be done to make the transfer from risk estimates in terms of exposed population towards estimates covering ‘economic’ impacts. A first step therein should be to include vulnerability, including: the sensitivity of a population to water scarcity, the available infrastructure and (financial) resources to cope with water scarcity, […] and capability of the responsible government to deal with water scarcity in a quick and efficient manner.” |
[72] * | “[…] final suggestion related to making better use of the new generation of socioeconomic scenarios. It is somewhat ironic that climatic impacts, adaptation and vulnerability (IAV) research, which is so dependent upon assumptions about socioeconomic development, has tended to underutilize socioeconomic scenarios. This is no different for the health sector, but there are opportunities to rectify the situation. […] one solution would be for climate change and health researchers to work to extend the SSPs so that they have more specific health-related variables. […] one key issue is the availability and parameterization of relevant vulnerability indicators within the SSPs. […] the availability of high-resolution projections for broader-level vulnerable indicators such as income distribution, population, health, and governance would be an important starting point.” |
[99] ** | “[…] it was decided to base adaptive capacity on present day data rather than future projections because it is much harder to obtain future projections of relevant socioeconomic data than it is for climate data: the great uncertainty inherent in any socioeconomic projections would contribute to the multiplication of overall model uncertainties.” |
[100] ** | “Although vulnerability is dynamic and changes over time, there is no quantitative information available about how this may affect damages. Hence, we assumed no future changes in vulnerability.” |
Group of Scenarios | Global SSPs | ET2050 Scenarios | DEMIFER Scenarios | CLIMSAVE Scenarios |
---|---|---|---|---|
Ext-SSP1 | SSP1 | B | GSE | WW |
Ext-SSP3 | SSP3 | Base | CME | Ica |
Ext-SSP4 | SSP4 | A | EME | RS |
Variable | Spatial and Temporal Scales | Source |
---|---|---|
Population per sex and age group | NUTS-2, 2015–2050, 10-year steps | DEMIFER |
Proportion of elderly and young | ||
Dependency ratios (economic and old age) | ||
Labor force participation per sex and age group | ||
Migration rates per type (international, inter-country, and extra-Europe) | ||
Life expectancy per sex | ||
Urbanization | NUTS-3, 1990–2050, yearly | ET2050 |
Accessibility per type (road, rail, air, freight) | ||
Investment in transportation networks | ||
Transportation network improvements | ||
Water use (water exploitation index, manufacturing water withdrawal, irrigation usage, total water use) | ~16 × 16 km, 2020, 2050 | CLIMSAVE |
Biodiversity (Shannon index) | ||
Agriculture (productivity, type of crops, intensity) |
EU-SSPs | Citations Extracted from the Narratives of the European SSPs and the Health-SSPs | Trend in Prevalence of Overweight in Europe |
---|---|---|
EU-SSP1 | “Population health improves significantly” “Increased emphasis on enhancing health and health care functions” “Reduced burden of health outcomes” “Changes in dietary patterns to lower burden of some chronic diseases” “High investments in human health and education” | Large decrease |
EU-SSP3 | “Population health decreases significantly” “Countries experience double burden of infectious and chronic climate-related health outcomes” “Reduced funding for surveillance and monitoring programs” “Low investments in human health and education” “Phasing out of social security system” | Large increase |
EU-SSP4 | “Unequal world, with limited access to high quality education and health services” “Lower burden of some chronic diseases from changes in dietary patterns” “High investments in human health and education for elites only, low for others” | Increase |
EU-SSP5 | “World attains human sustainable goals” “Health improves significantly, but not as much as in SSP1” “Because the challenges for local management of environmental quality are larger, the burden of chronic diseases is somewhat higher than in SSP1” “High investments in human health and education” | Decrease |
EU-SSPs | EU | Northern | Central/Western | Southern |
---|---|---|---|---|
EU-SSP1 | Increase | Stable | Increase | Increase |
EU-SSP3 | Large decrease | Decrease | Large decrease | Decrease |
EU-SSP4 | Decrease | Stable | Decrease | Decrease |
EU-SSP5 | Large increase | Increase | Large increase | Large increase |
Variable | Area | Trend | Center of Gravity | Adjustment Factor (%) |
---|---|---|---|---|
Overweight prevalence | Europe | Large increase | 63.3 | +19.5 |
Increase | 55.8 | +0.1 | ||
Decrease | 51.3 | −14.1 | ||
Large decrease | 45 | −27.6 | ||
Proportion of elderly living alone | Northern Europe | Increase | 46.6 | +16.7 |
Decrease | 33.6 | −15.8 | ||
Central/Western Europe | Large increase | 42.7 | +29.3 | |
Increase | 39.5 | +19.7 | ||
Decrease | 30.8 | −6.5 | ||
Large decrease | 26.7 | −19.2 | ||
Southern Europe | Large increase | 34.5 | +38.0 | |
Increase | 29.3 | +17.3 | ||
Decrease | 23.7 | −5.3 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohat, G. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways. Int. J. Environ. Res. Public Health 2018, 15, 554. https://doi.org/10.3390/ijerph15030554
Rohat G. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways. International Journal of Environmental Research and Public Health. 2018; 15(3):554. https://doi.org/10.3390/ijerph15030554
Chicago/Turabian StyleRohat, Guillaume. 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways" International Journal of Environmental Research and Public Health 15, no. 3: 554. https://doi.org/10.3390/ijerph15030554
APA StyleRohat, G. (2018). Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways. International Journal of Environmental Research and Public Health, 15(3), 554. https://doi.org/10.3390/ijerph15030554