Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique
Abstract
:1. Background
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
State the Problem | Break down the problem | Analytical hierarchical process | Analysis | Result verification |
2.3.1. Step 1. In This Stage, the Problem Was Stated As
2.3.2. Step 2. Breaking down the Problem
Average Temperature (Tmean)
Precipitation (Prec)
Altitude (Alt)
Slope (SLP)
Land Cover and Land Use (LULC)
Distance from Roads (DTR)
Distance to Water Bodies (DTWB)
Population Density (Pop Dens)
Malaria Prevalence (Mal Prev)
Normalized Difference Vegetation Index (NDVI)
2.3.3. Step 3: Analytical Hierarchical Process (AHP)
- (a)
- Formulation of a pair-wise comparison matrix for each of the input variables. The fundamental scale to help in the weighting process was used to develop the pair-wise comparison matrix (Table 1). For the designation of the importance of each variable, they were weighed using a pairwise comparison method, which is one of the components of AHP. Saaty’s pairwise comparison table was used to assist in the weighting process [49].
- (b)
- Establishment of the relative weights of each input variable. In the modelling of the final malaria risk areas, the risk factors do not have the same role and weight. Therefore, to designate the importance of each variable, they were weighted using a pair-wise comparison method from the AHP template worksheet [50].
- (c)
- Checking for consistency in the pairing process [16]. After computing the pair-wise matrix and to measure whether the derived matrix was derived at an acceptable level, a consistency test was calculated using Equation (2):
2.3.4. Step 4: Performing the Analysis
2.3.5. Step 5: Verifying the Result
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Bands | Wavelength | Resolution | |
---|---|---|---|
Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) | Band 1—Control aerosol | 0.43–0.45 | 30 |
Band 2—Blue | 0.45–0.51 | 30 | |
Band 3—Green | 0.53–0.59 | 30 | |
Band 4—Red | 0.64–0.67 | 30 | |
Band 5—Near infrared | 0.85–0.88 | 30 | |
Band 6—SWIR 1 | 1.57–1.65 | 30 | |
Band 7—SWIR 2 | 2.11–2.29 | 30 | |
Band 8—Panchromatic | 0.50–0.68 | 30 | |
Band 9—Cirrus | 1.36–1.38 | 15 | |
Band 10—Thermal infrared 1 | 10.60–11.19 | 100× (30) | |
Band 10—Thermal infrared 2 | 11.50–12.51 | 100× (30) |
References
- World Health Organization (WHO). World Malaria Report 2015. Available online: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ (accessed on 15 March 2017).
- Global Fund. Invest In the Future, Affect Malaria. World Malaria Day 25 April. 2015. Available online: http://www.rollbackmalaria.org/microsites/wmd2015/_docs/RBM_WorldMalaria2015_FactSheet_P3.pdf (accessed on 15 March 2017).
- World Health Organization (WHO). Mozambique Country Programme. 2015. Available online: http://www.who.int/countries/moz/en/ (accessed on 15 March 2017).
- Zacarias, O.P.; Anderson, M. Spatial and temporal patterns of incidence in Mozambique. Malar. J. 2011, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. About Malaria Biology. Available online: https://www.cdc.gov/malaria/about/biology/mosquitoes (accessed on 15 March 2017).
- United Nations. Transforming Our World, the 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 15 March 2017).
- World Health Organization. Health and Environment in Sustainable Development; WHO: Geneva, Switzerland, 1997; Available online: http://apps.who.int/iris/handle/10665/63464 (accessed on 15 March 2017).
- Ferrão, J.L.; Mendes, J.M.; Painho, M. Modelling the influence of Climate in Malaria occurrence in Chimoio Municipality, Mozambique. Parasites Vectors 2017, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Oguntoke, O.; Adeofun, C.O. Influence of weather and climate on malaria occurrence based on human bio-methereological methods in Ondo State Nigeria. J. Environ. Sci. Eng. 2011, 5, 1215–1228. [Google Scholar]
- Labspace. Communicable Diseases Module: 6. Factors that Affect Malaria Transmission. Available online: http://www.open.edu/openlearncreate/mod/oucontent/view.php?id=89&printable=1 (accessed on 25 April 2017).
- Paajmans, K.P.; Blandford, S.; Bell, A.S.; Blandford, J.I.; Read, A.F.; Thomas, M.B. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Nat. Acad. Sci. USA 2010, 107, 15135. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.; Abebe, G.; Tsegaye, W.; Lemu, L.G. Climate variables and malaria transmission dynamics in Jimma town in South West Ethiopia. Parasites Vectors 2011, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Kfrefis, C.A.; Schawrts, N. Modelling the relashionship between precipitation and malaria in Childen from holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 2011, 84, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Parham, P.E.; Michael, E. Modelling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 2010, 118, 620. [Google Scholar] [CrossRef] [PubMed]
- Pagot, J. Animal Production in the Tropics; MacMillan: Basingstoke, UK, 1992; ISBN-10 0333538188. [Google Scholar]
- Chikodzi, D. Spatial modelling of malaria risk using environmental, antropogenic and geographhycal information systems technique. J. Geosci. Geomat. 2013, 1, 8–14. [Google Scholar]
- Kazembe, L.N.; Hleinschmid, I.; Holtz, T.H.; Sharp, B.H. Spatial analysis and mapping of malaria risk in Malawi using-point referenced prevalence of infection data. Int. J. Health Geogr. 2006, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Begtrup, K.; Cuamba, N.; Dgege, M.; Mendes, C.; Gamage-Mendes, A.; Enosse, S.M.; Barreto, J.; Sinden, R.E.; Hogh, B. The Matola malaria Project: A temporal and spatial transmission of malaria disease in a suburban area of Maputo, Mozambique. Am. J. Trop. Hyg. 1997, 57, 550–559. [Google Scholar] [CrossRef]
- Krefis, A.C.; Schwarz, N.G.; Nkrumah, B.; Acquah, S.; Loag, W.; Odeland, J.; Sarpong, N.; Adu-Sarkodie, Y.; Ranft, U.; May, J. Spatial analysis of land cover determinats of malaria incidence is Ashanti region, Ghana. PLoS ONE 2011, 6, e17905. [Google Scholar] [CrossRef] [PubMed]
- Munga, S.; Yakob, L.; Mushinzimana, E.; Zhou, G.; Ouna, T.G.; Ouna, T.; Minakawa, N.; Githeko, A.; Yan, G. Land use and land cover changes and spatio-temporal dynamics’ and anopheline larval habitats during a four year period in a Highland community in Africa. Am. J. Trop. Med. Hyg. 2009, 61, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Riedel, N.; Vounatsou, P.; Miller, J.M.; Gosoniu, L.; Kawesha, E.C.; Mukonka, V.; Steketee, R.W. Geographical patterns and predictions of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS). Malar. J. 2010, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, S.; Sabelo, N.; Franke, J.; Vounatsu, P. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Geospat. Health 2015, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.E.; Zhang, S.S.; Wang, J.J.; Zheng, X.; Huang, F.; Li, W.D.; Xu, X.; Zhang, H.W. Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominate areas of Huang-Huai plain, China. Parsites Vectors 2012, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Russel, P.; Santiago, D. Flight range of the Funestus minimus Subgroup of Anopheles in the Philippines. Am. J. Trop. Med. Hyg. 1934, s1–s14, 139–157. [Google Scholar] [CrossRef]
- Jacob, A.; Greenberg, M.; DiMenna, A.; Hanelt, N.; Hofkin, V. Analysis of post-blood blood meals. J. Vector Ecol. 2012, 37, 83–89. [Google Scholar]
- Spitzen, J.J. Flight Behaviour of Hungry Malaria Mosquitoes Analysed. Available online: https://www.wur.nl/en/show/Flight-behaviour-of-hungry-malaria-mosquitoes-analysed.htm (accessed on 25 April 2017).
- Ferrão, J.L.; Mendes, J.M.; Painho, M.; Zacarias, S. Spatio-Temporal variation and socio-demographic characters of malaria in Chimoio municipality, Mozambique. Malar. J. 2016, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Nicole, M.; Wayant, N.M.; Maldonado, D.; Rojas de Arias, A.; Cousiño, B.; Goodwin, D.G. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration. Geospat. Health 2010, 4, 179–190. [Google Scholar]
- Oliveira, E.C.; Santos, E.S.; Zeilhofer, P.; Souza-Santos, R.; Atanaka-Santos, M. Spatial patterns of malaria in a land reform colonization project, Juruena municipality, Mato Grosso, Brazil. Malar. J. 2001, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Joao, S.Z. Causas de Mortalidade. Master’s Thesis, Universidade Católica de Moçambique, Beira, Mozambique, 2016. [Google Scholar]
- Milla, A. GIS, GPS, and remote sensing in Extension services: Where to start, what to know. J. Ext. 2005, 43, 3. [Google Scholar]
- Muin, J.K. Precision Public Health and Precision Medicine. Two Pears in a Pod. Available online: https://blogs.cdc.gov/genomics/2015/03/02/precision-public/ (accessed on 15 March 2016).
- Cohen, J.M.; Tatem, A.; Dlamini, S.; Novonty, J.M.; Kandula, S. Rapid case-based mapping seasonal malaria transmission risk for strategic elimination planning in Swaziland. Malar. J. 2013, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Malaria Atlas Project. Developing Global Maps of Malaria Risk. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762059/ (accessed on 25 April 2017).
- Traveller Start. Know Which Malaria Areas in Southern Africa to Avoid. 2016. Available online: https://www.travelstart.co.za/lp/malaria-and-pregnancy (accessed on 25 April 2017).
- Instituto Nacional de Estatística. Projecções Anuais da População Total, Urbana e Rural, dos Distritos da Província de Manica 2007–2040; Instituto Nacional de Estatística: Maputo, Mozambique, 2011. [Google Scholar]
- Climatedata. EU. Chimoio Climate. 2011. Available online: https://www.climatedata.eu/climate.php?loc=mzzz0069&lang=en (accessed on 25 April 2017).
- Governo de Manica. Manica Province Strategic Development Plan, 2011–2015. Available online: http://www.manica.gov.mz/documentos/estrategias/plano-estrategico-da-provincia-de-manica-2011-2015/versao-inglesa/STRATEGIC%20PLAN.pdf/view (accessed on 10 May 2017).
- WorldClim. Global Climate Data. Available online: http://www.worldclim.org/bioclim (accessed on 10 May 2017).
- Environmental Systems Research Institute (ESRI). ArcGIS 10.2.2. Available online: https://support.esri.com/en/download/2093 (accessed on 10 May 2017).
- National Aeronautics and Space Administration (NASA). Landsat 8. Available online: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/ (accessed on 16 April 2016).
- United States Geological Survey (USGS). Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://lta.cr.usgs.gov/SRTM1Arc (accessed on 16 April 2016).
- ArcMap10.4. A Conceptual Model for Solving Spatial Problems. Available online: http://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/solving-problems/a-conceptual-model-for-solving-spatial-problems.htm (accessed on 16 April 2016).
- Alimi, T.O.; Fuller, D.O.; Herrera, S.V.; Herrera, M.A.; Qinone, M. A multi-criteria decision analysis approach to assessing malaria risk in Northern South America. BMC Public Health 2016, 16, 221. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, M.; Castro, M.C. Mapping malaria risk and vulnerability in the United Republic of Tanzania a spatial explicit model. Popul. Health Metr. 2015, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.O.; Troy, A.; Beier, J.C. Participatory risk mapping of malaria vector in Northern South America using environmental and population data. Appl. Geogr. 2014, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.A.; Nusrath, A. Detemining the vegaetation index (NDVI) from Landsat 8 satellite data. Int. J. Adv. Res. 2016. [Google Scholar] [CrossRef]
- Bhatt, B.; Joshi, P.J. Analytical, Hierarchical Process Modelling for Malaria Risk Zones in Vadodora District, Gujarat. The International Archives of Photogrammetry, Remote Sensing, and Spatial Information Services. 2014. Available online: http://adsabs.harvard.edu/abs/2014ISPAr.XL8.171B (accessed on 16 April 2016).
- Saaty, T.L. Decision making with the analytical hierarchical process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar]
- Bernard, S. AHP Template. Available online: http://www.scbuk.com/ahp.html (accessed on 16 April 2016).
- Abellana, R.; Ascaso, C.; Aponte, J.; Saute, F.; Delino Nhalungo, D.; Nhacolo, A.; Alonso, P. Spatio-seasonal modelling of the incidence rate of malaria in Mozambique. Malar. J. 2008, 7, 228. [Google Scholar] [CrossRef] [PubMed]
- Giardina, F.; Franke, J.; Vounatsou, P. Geostatistical modelling of malaria risk in Mozambique: Effect of the spatial resolution when using remotely sensed imagery. Geospat. Health 2015, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Mulefutu, F.O.; Nzive, F.; Boitt, M.M. Malariaa risk and vulnerability assessment GIS approach. Case study of Busia county, Kenya. J. Environ. Sci. Toxicol. Food Sci. 2016, 10, 104–112. [Google Scholar]
- Fit for Travel. Travel Health Information for People Travelling Abroad the UK. Available online: http://www.fitfortravel.nhs.uk/home.aspx (accessed on 25 April 2017).
Factor | Weight | Class | Influence | Rationale |
---|---|---|---|---|
T mean | 0.224 | <22 °C | Low | Bellow 22 °C sporogony is not completed |
>28 °C | Moderate | Over 28 °C sporogony is affected | ||
22–28 °C | High | 22–28 °C ideal for incubation | ||
Precipit | 0.208 | <450 mm | Low | <450 mm is arid, and mosquitoes will not survive |
450–700 mm | Moderate | difficulties in survival >700 mm is wet and | ||
>1000 mm | Low | inappropriate for mosquito breeding | ||
Altitude | 0.123 | <200 m | High | <200 m low land and high risk of vector |
200–500 m | Moderate | proliferation, 200 to 500 m upland | ||
>500 m | Low | >1000 m highlands and low risk of mosquito survival | ||
Slope | 0.082 | 0–5° | High | appropriate conditions for water stagnation |
5–15° | Moderate | |||
>15° | Low | >15° inappropriate for water stagnation | ||
LULC | 0.082 | crop, grass and water bodies | High | Suitable for mosquitoes’ proliferation |
shrubs and mosaic vegetation | Moderate | |||
forest, bare, urban | Low | Not suitable for mosquitoes breeding | ||
DTWB | 0.123 | <500 m | High | The mosquito fly range is 1500 m |
500–1500 m | Moderate | Less than 500 m from WTBD | ||
>1500 m | Low | the risk of malaria is high | ||
DTR | 0.038 | <2.5 Km | Lowe | <2.5 km walking distance to clinic |
2.5–5 km | Moderate | 2.5 to 5 km clinic can be reached by bicycle | ||
>5 km | High | <5 km interventions are difficult | ||
Pop dens | 0.051 | <6000 pers/km2 | Low | High populated area has higher risk |
6000–9000 pers/m2 | Moderate | since mosquitoes have abundant | ||
>9000 pers/km2 | High | blood meals close by | ||
Malar prev | 0.051 | <14% | Low | High prevalence areas have higher |
14–21% | Moderate | risk since mosquitoes do not have | ||
>21% | High | to travel long for a blood meal | ||
NDVI | 0.047 | −0.2777–0 | Low | |
0–0.255 | Moderate | |||
0.255–1 | High | High NDVI is related to high malaria risk |
Scale | Degree of Preference | Explanation |
---|---|---|
1 | Equal importance | Two factors contribute equally to the objective. |
3 | Moderate importance of one factor over another | Experience and judgment slightly favour one over the other. |
5 | Strong or essential importance | Experience and judgment strongly favour one over the other. |
7 | Very strong importance | Experience and judgment very strongly favour one over the other. It is experience is demonstrated in practice. |
9 | Extreme importance | The evidence favouring one over the other is of the highest possible validity. |
2,4,6,8 | Values for inverse comparison | When compromise is needed. |
Tmean | Prec | Alt | Slope | LULC | DTWB | DTR | Pop den | Prev | NDVI | |
---|---|---|---|---|---|---|---|---|---|---|
Tmean | 1.00 | 1.00 | 3.00 | 4.00 | 4.00 | 2.00 | 6.00 | 4.00 | 4.00 | 4.00 |
Prec | 1.00 | 1.00 | 3.00 | 4.00 | 3.00 | 1.00 | 7.00 | 4.00 | 4.00 | 4.00 |
Alt | 0.33 | 0.33 | 1.00 | 3.00 | 3.00 | 1.00 | 4.00 | 2.00 | 2.00 | 3.00 |
Slope | 0.25 | 0.25 | 0.33 | 1.00 | 1.00 | 2.00 | 1.00 | 3.00 | 1.00 | 1.00 |
LULC | 0.25 | 0.33 | 0.33 | 1.00 | 1.00 | 2.00 | 2.00 | 5.00 | 1.00 | 1.00 |
DTWB | 0.50 | 1.00 | 1.00 | 0.50 | 0.50 | 1.00 | 3.00 | 4.00 | 4.00 | 2.00 |
DTR | 0.17 | 0.25 | 0.25 | 1.00 | 0.50 | 0.33 | 1.00 | 1.00 | 1.00 | 2.00 |
Pop den | 0.25 | 0.50 | 0.50 | 0.33 | 0.20 | 0.25 | 1.00 | 1.00 | 2.00 | 4.00 |
Prev | 0.25 | 0.50 | 0.50 | 1.00 | 1.00 | 0.25 | 1.00 | 0.50 | 1.00 | 2.00 |
NDVI | 0.25 | 0.25 | 0.33 | 1.00 | 1.00 | 0.50 | 0.50 | 0.25 | 0.50 | 1.00 |
Consistency Index (%) | Interpretation |
---|---|
0 | Judgment is perfectly consistent |
≤10 | Consistent enough |
≥10 | Matrix needs improvement |
≥90 | judgments are random and are completely untrustworthy |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrao, J.L.; Niquisse, S.; Mendes, J.M.; Painho, M. Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique. Int. J. Environ. Res. Public Health 2018, 15, 795. https://doi.org/10.3390/ijerph15040795
Ferrao JL, Niquisse S, Mendes JM, Painho M. Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique. International Journal of Environmental Research and Public Health. 2018; 15(4):795. https://doi.org/10.3390/ijerph15040795
Chicago/Turabian StyleFerrao, Joao L., Sergio Niquisse, Jorge M. Mendes, and Marco Painho. 2018. "Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique" International Journal of Environmental Research and Public Health 15, no. 4: 795. https://doi.org/10.3390/ijerph15040795
APA StyleFerrao, J. L., Niquisse, S., Mendes, J. M., & Painho, M. (2018). Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique. International Journal of Environmental Research and Public Health, 15(4), 795. https://doi.org/10.3390/ijerph15040795