Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Ceramic NF Membrane and Bench-Scale NF Filtration System
2.3. Ozonated Water
2.4. Experimental Protocols
2.5. Analytical Techniques
3. Results
3.1. Filtration and Separation Performance
3.1.1. Fouling Development
3.1.2. Water Quality
3.2. Surface Flushing with Ozonated Water
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nghiem, L.D.; Coleman, P.J.; Espendiller, C. Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination 2010, 250, 682–687. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Sep. Purif. Technol. 2009, 66, 194–201. [Google Scholar] [CrossRef]
- Verliefde, A.; Cornelissen, E.; Amy, G.; Van der Bruggen, B.; van Dijk, H. Priority organic micropollutants in water sources in flanders and the netherlands and assessment of removal possibilities with nanofiltration. Environ. Pollut. 2007, 146, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Butler, R.; MacCormick, T. Opportunities for decentralized treatment, sewer mining and effluent re-use. Desalination 1996, 106, 273–283. [Google Scholar] [CrossRef]
- Ravazzini, A.M.; van Nieuwenhuijzen, A.F.; van der Graaf, J.H.M.J. Direct ultrafiltration of municipal wastewater: Comparison between filtration of raw sewage and primary clarifier effluent. Desalination 2005, 178, 51–62. [Google Scholar] [CrossRef]
- Chanan, A.; Saravanamuth, V.; Kandasamy, J.; Shon, H.K. Chemical-assisted physico-biological water mining system. Proc. ICE Water Manag. 2010, 163, 469–474. [Google Scholar] [CrossRef]
- Kimura, K.; Honoki, D.; Sato, T. Effective physical cleaning and adequate membrane flux for direct membrane filtration (dmf) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol. 2017, 181, 37–43. [Google Scholar] [CrossRef]
- Van Geluwe, S.; Braeken, L.; Van der Bruggen, B. Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Res. 2011, 45, 3551–3570. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Bouranene, S.; Szymczyk, A.; Fievet, P.; Vidonne, A. Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane. J. Membr. Sci. 2007, 290, 216–221. [Google Scholar] [CrossRef]
- Buekenhoudt, A.; Bisignano, F.; De Luca, G.; Vandezande, P.; Wouters, M.; Verhulst, K. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes. J. Membr. Sci. 2013, 439, 36–47. [Google Scholar] [CrossRef]
- Weber, R.; Chmiel, H.; Mavrov, V. Characteristics and application of new ceramic nanofiltration membranes. Desalination 2003, 157, 113–125. [Google Scholar] [CrossRef]
- Sentana, I.; Puche, R.D.S.; Sentana, E.; Prats, D. Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes. Desalination 2011, 277, 147–155. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Nghiem, L.D. Nanofiltration of trace organic chemicals: A comparison between ceramic and polymeric membranes. Sep. Purif. Technol. 2014, 136, 258–264. [Google Scholar] [CrossRef]
- Lee, W.; Lee, H.-W.; Choi, J.-S.; Oh, H.J. Effects of transmembrane pressure and ozonation on the reduction of ceramic membrane fouling during water reclamation. Desalin. Water Treat. 2014, 52, 612–617. [Google Scholar] [CrossRef]
- Lehman, S.G.; Liu, L. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. Water Res. 2009, 43, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Karnik, B.S.; Davies, S.H.R.; Chen, K.C.; Jaglowski, D.R.; Baumann, M.J.; Masten, S.J. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res. 2005, 39, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Davies, S.H.R.; Baumann, M.J.; Tarabara, V.V.; Masten, S.J. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation–ceramic ultrafiltration system treating natural waters. J. Membr. Sci. 2008, 311, 165–172. [Google Scholar] [CrossRef]
- Duke, M.; Dow, N.; Murphy, D.; Clement, J. Outcomes of the australian ozone/ceramic membrane trial on secondary effluent. Water J. Aust. Water Assoc. 2013, 40, 45–51. [Google Scholar]
- Tang, S.; Zhang, Z.; Liu, J.; Zhang, X. Double-win effects of in-situ ozonation on improved filterability of mixed liquor and ceramic uf membrane fouling mitigation in wastewater treatment? J. Membr. Sci. 2017, 533, 112–120. [Google Scholar] [CrossRef]
- Szymanska, K.; Zouboulis, A.I.; Zamboulis, D. Hybrid ozonation–microfiltration system for the treatment of surface water using ceramic membrane. J. Membr. Sci. 2014, 468, 163–171. [Google Scholar] [CrossRef]
- Zhu, B.; Hu, Y.; Kennedy, S.; Milne, N.; Morris, G.; Jin, W.; Gray, S.; Duke, M. Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes. J. Membr. Sci. 2011, 378, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Sartor, M.; Schlichter, B.; Gatjal, H.; Mavrov, V. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in thailand. Desalination 2008, 222, 528–540. [Google Scholar] [CrossRef]
- Kim, J.-O.; Jung, J.-T.; Yeom, I.-T.; Aoh, G.-H. Effect of fouling reduction by ozone backwashing in a microfiltration system with advanced new membrane material. Desalination 2007, 202, 361–368. [Google Scholar] [CrossRef]
- Fujioka, T.; Nghiem, L.D. Fouling control of a ceramic microfiltration membrane for direct sewer mining by backwashing with ozonated water. Sep. Purif. Technol. 2015, 142, 268–273. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G. Factors affecting the rejection of organic solutes during nf/ro treatment—A literature review. Water Res. 2004, 38, 2795–2809. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Verliefde, A.; Braeken, L.; Cornelissen, E.R.; Moons, K.; Verberk, J.Q.J.C.; van Dijk, H.J.C.; Amy, G. Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration. J. Chem. Technol. Biotechnol. 2006, 81, 1166–1176. [Google Scholar] [CrossRef]
- Narumiya, M.; Nakada, N.; Yamashita, N.; Tanaka, H. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J. Hazard. Mater. 2013, 260, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Kramer, F.C.; Shang, R.; Heijman, S.G.J.; Scherrenberg, S.M.; van Lier, J.B.; Rietveld, L.C. Direct water reclamation from sewage using ceramic tight ultra- and nanofiltration. Sep. Purif. Technol. 2015, 147, 329–336. [Google Scholar] [CrossRef]
- Henderson, R.K.; Stuetz, R.M.; Khan, S.J. Demonstrating ultra-filtration and reverse osmosis performance using size exclusion chromatography. Water Sci. Technol. 2010, 62, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
- Drewes, J.E.; Bellona, C.; Xu, P.; Amy, G.; Filteau, G.; Oelker, G. Comparing Nanofiltration and Reverse Osmosis for Treating Recycled Water; AWWA Research Foundation: Alexandria, VA, USA, 2008. [Google Scholar]
- Chellam, S.; Taylor, J.S. Simplified analysis of contaminant rejection during ground- and surface water nanofiltration under the information collection rule. Water Res. 2001, 35, 2460–2474. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Res. 2007, 41, 3948–3958. [Google Scholar] [CrossRef] [PubMed]
- Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C. The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 2008, 322, 52–66. [Google Scholar] [CrossRef]
- Wang, F.; Tarabara, V.V. Pore blocking mechanisms during early stages of membrane fouling by colloids. J. Colloid Interface Sci. 2008, 328, 464–469. [Google Scholar] [CrossRef] [PubMed]
Compound | MW [Da] | Log D at pH 6.5 | pKa | Ionisation at pH 6.5 [%] | Suppliers | ||
---|---|---|---|---|---|---|---|
Neutral | Hydrophilic | Acetaminophen | 151.17 | 0.91 | 9.46 | 0 | Wako |
Theophylline | 180.17 | −0.79 | 7.82, −0.78 | 5 | Wako | ||
Antipyrine | 188.23 | 1.22 | 0.49 | 0 | Wako | ||
Caffeine | 194.19 | −0.55 | −1.16 | 0 | Wako | ||
Primidone | 218.26 | 1.12 | 11.5 | 0 | Wako | ||
Cyclophosphamide | 261.08 | 0.10 | 13.43, 0.08 | 0 | Wako | ||
Sulfathiazole | 255.31 | 0.86 | 6.93, 2.04 | 27 | Wako | ||
Sulfamerazine | 264.30 | 0.41 | 6.99, 2 | 24 | Wako | ||
Sulfadimidine | 278.33 | 0.54 | 6.99, 2 | 24 | Wako | ||
Sulfamonomethoxine | 280.30 | 0.66 | 7.15, 2.63 | 18 | Wako | ||
Sulfadimethoxine | 310.33 | 1.14 | 6.91, 1.95 | 28 | Wako | ||
Thiamphenicol | 356.21 | −0.22 | 8.75 | 1 | Wako | ||
Dipyridamole | 504.64 | 0.03 | 3.54, 14.97 | 0 | Wako | ||
Hydrophobic | Isopropylantipyrine | 230.31 | 2.35 | 0.87 | 0 | Wako | |
Carbamazepine | 236.27 | 2.77 | 15.96 | 0 | Wako | ||
Griseofulvin | 352.77 | 2.17 | - | 0 | MP | ||
Charged | + | Ethenzamide | 165.19 | 1.53 | 6.2, 7.9 | 51 | Wako |
Salbutamol | 239.32 | −2.01 | 9.4, 10.12 | 100 | Wako | ||
Propranolol | 259.35 | −0.32 | 9.67, 14.09 | 100 | Wako | ||
Atenolol | 266.34 | −2.48 | 9.68, 14.07 | 100 | Wako | ||
Trimethoprim | 290.32 | 0.60 | 7.16 | 82 | Wako | ||
Disopyramide | 339.48 | 0.11 | 10.42 | 100 | Wako | ||
Sulpiride | 341.43 | −1.55 | 8.39, 10.24 | 99 | Wako | ||
Pirenzepine | 351.41 | 0.19 | 7.2, 14.78 | 82 | Wako | ||
Diltiazem | 414.52 | 1.05 | 8.18. 12.86 | 98 | Wako | ||
Tiamulin | 493.75 | 1.61 | 9.51, 14.43 | 100 | Wako | ||
Clarithromycin | 747.97 | 1.36 | 8.38, 12.46 | 99 | Wako | ||
Azithromycin | 749.00 | −2.89 | 9.57, 12.43 | 100 | LKT | ||
Roxithromycin | 837.06 | 0.47 | 9.08, 12.45 | 100 | Wako | ||
Tylosin | 916.11 | 1.54 | 7.2, 12.45 | 83 | Wako | ||
− | Clofibric acid | 214.65 | −0.08 | 3.37 | 100 | Alfa A. | |
Naproxen | 230.26 | 0.70 | 4.19 | 100 | Wako | ||
Nalidixic acid | 232.24 | 0.33 | 4.66, 5.77 | 84 | Wako | ||
Mefenamic acid | 241.29 | 2.83 | 3.89, −1.58 | 100 | Wako | ||
Fenoprofen | 242.27 | 1.15 | 3.96 | 100 | LKT | ||
Sulfapyridine | 249.29 | 0.64 | 6.24, 2.13 | 65 | Wako | ||
Sulfamethoxazole | 253.28 | 0.38 | 6.16, 1.97 | 69 | Wako | ||
Ketoprofen | 254.29 | 1.05 | 3.88 | 100 | Wako | ||
Diclofenac | 296.15 | 1.79 | 4.00 | 100 | Wako | ||
Furosemide | 330.74 | −0.48 | 4.25, −1.52 | 99 | Wako | ||
Indometacin | 357.79 | 0.88 | 3.79 | 100 | Wako | ||
Levofloxacin | 361.37 | 0.27 | 5.29, 6.16 | 67 | LKT | ||
Bezafibrate | 361.82 | 1.37 | 3.83, −0.84 | 100 | LKT | ||
+/− | Norfloxacin | 319.34 | −0.98 | 5.58, 8.68 | 89 | Wako | |
Ciprofloxacin | 331.35 | −0.87 | 5.56, 8.68 | 89 | LKT | ||
Enrofloxacin | 359.40 | 0.96 | 5.52, 6.66 | 96 | ICN | ||
Tetracycline | 444.44 | −3.50 | 8.19, 2.92 | 97 | Wako | ||
Chlortetracycline | 478.88 | −2.96 | 2.65, 8.55 | 98 | Wako |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujioka, T.; Hoang, A.T.; Okuda, T.; Takeuchi, H.; Tanaka, H.; Nghiem, L.D. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water. Int. J. Environ. Res. Public Health 2018, 15, 799. https://doi.org/10.3390/ijerph15040799
Fujioka T, Hoang AT, Okuda T, Takeuchi H, Tanaka H, Nghiem LD. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water. International Journal of Environmental Research and Public Health. 2018; 15(4):799. https://doi.org/10.3390/ijerph15040799
Chicago/Turabian StyleFujioka, Takahiro, Anh T. Hoang, Tetsuji Okuda, Haruka Takeuchi, Hiroaki Tanaka, and Long D. Nghiem. 2018. "Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water" International Journal of Environmental Research and Public Health 15, no. 4: 799. https://doi.org/10.3390/ijerph15040799
APA StyleFujioka, T., Hoang, A. T., Okuda, T., Takeuchi, H., Tanaka, H., & Nghiem, L. D. (2018). Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water. International Journal of Environmental Research and Public Health, 15(4), 799. https://doi.org/10.3390/ijerph15040799