The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa
Abstract
:1. Introduction
2. Maize as a Staple Crop in South Africa
3. Agronomy Characteristics of Maize Production
3.1. Seed Establishment and Maize Growth
3.2. Plant Density, Planting Date and Maize Production
3.3. Effects of Drought on Maize Production
3.4. Constraints to Maize Production
3.4.1. Pests
3.4.2. Weeds
4. Vitamin A Deficiency: A Food and Nutrition Insecurity Challenge
5. Vitamin A Deficiency in South Africa
6. Remediation Strategies Applied to Reduce Vitamin A Deficiency in South Africa
7. Biofortification of New Cultivars for Improved Vitamin A Content
8. Provitamin A-Biofortified Maize to Reduce Hidden Hunger: Food for the Future
9. Carotenoids in Provitamin A Maize
10. Perceptions and Other Factors Influencing the Adoption of Maize Hybrids
11. Provitamin A-Biofortified Maize as Income for Smallholder Farmers
12. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mazvimbakupa, F.; Thembinkosi Modi, A.; Mabhaudhi, T. Seed quality and water use characteristics of maize landraces compared with selected commercial hybrids. Chil. J. Agric. Res. 2015, 75, 13–20. [Google Scholar] [CrossRef]
- Kruger, M.; Van Rensburg, J.B.J.; Van den Berg, J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot. 2009, 28, 684–689. [Google Scholar] [CrossRef]
- Hu, Y.; Burucs, Z.; Schmidhalter, U. Effect of foliar fertilization application on the growth and mineral nutrient content of maize seedlings under drought and salinity. Soil Sci. Plant Nutr. 2008, 54, 133–141. [Google Scholar] [CrossRef]
- Odendo, M.; De Groote, H.; Odongo, O.M. Assessment of Farmers’ Preferences and Constraints to Maize Production in Moist Midaltitude Zone of Western Kenya. In Proceedings of the 5th International Conference of the African Crop Science Society, Lagos, Nigeria, 21–26 October 2001. [Google Scholar]
- Govender, L. Nutritional Composition and Acceptance of a Complementary Food Made with Provitamin A-Biofortified Maize. Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2014. [Google Scholar]
- Mabhaudhi, T.; Modi, A.T.; Beletse, Y.G. Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea L. Verdc) landrace to imposed water stress: II. Rain shelter conditions. Water SA 2013, 39, 191–198. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Awobusuyi, T.D.; Siwela, M.; Kolanisi, U.; Amonsou, E.O. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J. Sci. Food Agric. 2016, 96, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E. Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proc. Nutr. Soc. 2003, 62, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Aluru, M.; Xu, Y.; Guo, R.; Wang, Z.; Li, S.; White, W.; Wang, K.; Rodermel, S. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 2008, 59, 3551–3562. [Google Scholar] [CrossRef] [PubMed]
- Ntila, S.; Ndhlala, A.R.; Kolanisi, U.; Abdelgadir, H.; Siwela, M. Acceptability of a moringa-added complementary soft porridge to caregivers in Hammanskraal, Gauteng province and Lebowakgomo, Limpopo province, South Africa. S. Afr. J. Clin. Nutr. 2018, 1–7. [Google Scholar] [CrossRef]
- Egesel, C.O.; Wong, J.C.; Lambert, R.J.; Rocheford, T.R. Gene dosage effects on carotenoid concentration in maize grain. Maydica 2003, 48, 183–190. [Google Scholar]
- Howe, J.A.; Tanumihardjo, S.A. Carotenoid-biofortified maize maintains adequate vitamin A status in Mongolian gerbils. J. Nutr. 2006, 136, 2562–2567. [Google Scholar] [CrossRef] [PubMed]
- Akinnuoye, D.B.; Modi, A.T. Germination characteristics of SC701 maize hybrid according to size and shape at different temperature regimes. Plant Prod. Sci. 2015, 18, 514–521. [Google Scholar] [CrossRef]
- Lividini, K.; Fiedler, J.L. Assessing the promise of biofortification: A case study of high provitamin a maize in Zambia. Food Policy 2015, 54, 65–77. [Google Scholar] [CrossRef]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47 (Suppl. 3), S-88–S-105. [Google Scholar] [CrossRef]
- De Groote, H.; Tomlins, K.; Haleegoah, J.; Awool, M.; Frimpong, B.; Banerji, A.; Meenakshi, J.V. Assessing rural consumers’ WTP for orange, biofortified maize in Ghana with experimental auctions and a simulated radio message. In Proceedings of the 2010 AAAE Third Conference/AEASA 48th Conference, Cape Town, South Africa, 19–23 September 2010; pp. 19–23. [Google Scholar]
- Mabhaudhi, T.; Modi, A.T. Early establishment performance of local and hybrid maize under two water stress regimes. S. Afr. J. Plant Soil 2010, 27, 299–304. [Google Scholar] [CrossRef]
- Pillay, K. Nutritional Quality and Consumer Acceptability of Provitamin A-Biofortified Maize. Ph.D. Thesis, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2011. [Google Scholar]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Smith, B. The Farming Handbook; University of Natal Press: Scottsville, South Africa, 2006. [Google Scholar]
- Govender, L.; Pillay, K.; Derera, J.; Siwela, M. Acceptance of a complementary food prepared with yellow, provitamin A-biofortified maize by black caregivers in rural KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2015, 27, 217–221. [Google Scholar] [CrossRef]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Burchi, F.; Fanzo, J.; Frison, E. The role of food and nutrition system approaches in tackling hidden hunger. Int. J. Environ. Res. Public Health 2011, 8, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Kiria, C.G.; Vermeulen, H.; De Groote, H. Sensory Evaluation and Consumers’ Willingness to pay for quality protein maize (QPM) using experimental auctions in rural Tanzania. In Proceedings of the 3rd International Conference of the African Association of Agricultural Economists, Cape Town, South Africa, 19–23 September 2010; pp. 19–23. [Google Scholar]
- Moussa, H.R.; Abdel-Aziz, S.M. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust. J. Crop Sci. 2008, 1, 31–36. [Google Scholar]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.V.; Pfeiffer, W. Biofortification of staple food crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.M.; Shackleton, S.E.; Cousins, B. The role of land-based strategies in rural livelihoods: The contribution of arable production, animal husbandry and natural resource harvesting in communal areas in South Africa. Dev. South. Afr. 2001, 18, 581–604. [Google Scholar] [CrossRef]
- Kanampiu, F.K.; Kabambe, V.; Massawe, C.; Jasi, L.; Friesen, D.; Ransom, J.K.; Gressel, J. Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Prot. 2003, 22, 697–706. [Google Scholar]
- Denning, G.; Kabambe, P.; Sanchez, P.; Malik, A.; Flor, R.; Harawa, R.; Sachs, J. Input subsidies to improve smallholder maize productivity in Malawi: Toward an African Green Revolution. PLoS Biol. 2009, 7, e1000023. [Google Scholar] [CrossRef] [PubMed]
- Harvestplus. Target Crops, Nutrients, Countries, & Release Dates. Available online: http://www.harvestplus.org/content/crops (accessed on 22 October 2015).
- United Nations International Children’s Emergency Fund (UNICEF) United Nations. Vitamin A Supplementation: A Statistical Snapshot; UNICEF Nutrition Section: New York, NY, USA, 2014. [Google Scholar]
- Sithole, N.J. Food Security Potential of Bottle Gourd [Lagenaria Siceraria (Molina Standly)] Landraces: An Agronomic Perspective. Master’s Thesis, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2014. [Google Scholar]
- Fischer, K.; Van den Berg, J.; Mutengwa, C. Is Bt maize effective in improving South African smallholder agriculture? S. Afr. J. Sci. 2015, 111, 1–2. [Google Scholar] [CrossRef]
- Odunitan-Wayas, F.A.; Kolanisi, U.; Chimonyo, M.; Siwela, M. Effect of provitamin a biofortified maize inclusion on quality of meat from indigenous chickens. J. Appl. Poult. Res. 2016, 25, 581–590. [Google Scholar] [CrossRef]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Influence of biofortification with provitamin A on protein, selected micronutrient composition and grain quality of maize. Afr. J. Biotechnol. 2013, 12, 5285–5293. [Google Scholar]
- Meenakshi, J.V.; Banerji, A.; Manyong, V.; Tomlins, K.; Mittal, N.; Hamukwala, P. Using a discrete choice experiment to elicit the demand for a nutritious food: Willingness-to-pay for orange maize in rural Zambia. J. Health Econ. 2012, 31, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Mbata, T.I.; Ikenebomeh, M.J.; Alaneme, J.C. Studies on the microbiological, nutrient composition and antinutritional contents of fermented maize flour fortified with bambara groundnut (Vigna subterranean L). Afr. J. Food Sci. 2009, 3, 165–171. [Google Scholar]
- Moloto, R.M.; Moremi, L.H.; Soundy, P.; Maseko, S.T. Biofortification of common bean as a complementary approach to addressing zinc deficiency in South Africans. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 27, 1–10. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Habben, J.E.; Edmeades, G.O.; Schussler, J.R. Improving drought tolerance in maize: A view from industry. Field Crops Res. 2004, 90, 19–34. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Mukanga, M.; Derera, J.; Tongoona, P.; Laing, M.D. Farmers’ perceptions and management of maize ear rots and their implications for breeding for resistance. Afr. J. Agric. Res. 2011, 6, 4544–4554. [Google Scholar]
- Mabhaudhi, T. Responses of Maize (Zea mays L.) Landraces to Water Stress Compared with Commercial Hybrids. Ph.D. Thesis, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2009. [Google Scholar]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32 (Suppl. 1), S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Tumuhimbise, G.A.; Namutebi, A.; Turyashemererwa, F.; Muyonga, J. Provitamin A crops: Acceptability, bioavailability, efficacy and effectiveness. Food Nutr. Sci. 2013, 4, 430–435. [Google Scholar] [CrossRef]
- Muzhingi, T.; Gadaga, T.H.; Siwela, A.H.; Grusak, M.A.; Russell, R.M.; Tang, G. Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am. J. Clin. Nutr. 2011, 94, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.; Winter-Nelson, A. Consumer acceptance of provitamin A-biofortified maize in Maputo, Mozambique. Food Policy 2008, 33, 341–351. [Google Scholar] [CrossRef]
- Beswa, D.; Dlamini, N.R.; Siwela, M.; Amonsou, E.O.; Kolanisi, U. Effect of Amaranth addition on the nutritional composition and consumer acceptability of extruded provitamin A-biofortified maize snacks. Food Sci. Technol. (Camp.) 2016, 36, 30–39. [Google Scholar] [CrossRef]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Khoza, S. Assessment of Maize Germplasm Lines for Genetic Diversity, Cultivar Superiority and Combining Ability. Master’s Thesis, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2012. [Google Scholar]
- Zuma, M.K.; Kolanisi, U.; Modi, A.T. Farmer perceptions on South African popular maize varieties: A proxy for the integration of provitamin A biofortified maize into smallholder farming system. In Proceedings of the 3rd International Conference on Global Food Security, Cape Town, South Africa, 3–6 December 2017. [Google Scholar]
Staple Crop | Targeted Nutrient | Targeted Country | Agronomic Traits |
---|---|---|---|
Bean | Iron | DR Congo, Rwanda | Virus resistance, heat and drought tolerance |
Cassava | Vitamin A | DR Congo, Nigeria | Disease resistance |
Maize | Vitamin A | Nigeria, Zambia | Disease resistance, drought tolerance |
Pearl Millet | Iron | India | Mildew resistance, drought tolerance |
Rice | Zinc | Bangladesh, India | Disease and pest resistance, cold and submergence tolerance |
Sweet Potato | Vitamin A | Mozambique, Uganda, South Africa | Disease resistance, drought tolerance, acid soil tolerance |
Wheat | Zinc | India, Pakistan | Disease and lodging resistance |
Carotenoids (nmol/g) | |||||
---|---|---|---|---|---|
Maize | Lutein | Zeaxanthin | β-cryptoxanthin | β-carotene | β-carotene |
White | 1.1 ± 0.01 | 0.09 ± 0.01 | - | - | 0.05 ± 0.002 |
Yellow | 16.8 ± 0.6 | 5.4 ± 0.5 | 2.6 ± 0.4 | 0.44 ± 0.04 | 0.77 ± 0.14 |
Orange | 15.7 ± 0.3 | 11.6 ± 0.3 | 5.4 ± 0.05 | 0.58 ± 0.02 | 5.6 ± 0.1 |
Dark orange | 19.1 ± 4.5 | 11.8 ± 2.9 | 5.3 ± 0.7 | 1.53 ± 0.04 | 13.9 ± 0.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuma, M.K.; Kolanisi, U.; Modi, A.T. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. Int. J. Environ. Res. Public Health 2018, 15, 805. https://doi.org/10.3390/ijerph15040805
Zuma MK, Kolanisi U, Modi AT. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. International Journal of Environmental Research and Public Health. 2018; 15(4):805. https://doi.org/10.3390/ijerph15040805
Chicago/Turabian StyleZuma, Mthokozisi K., Unathi Kolanisi, and Albert T. Modi. 2018. "The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa" International Journal of Environmental Research and Public Health 15, no. 4: 805. https://doi.org/10.3390/ijerph15040805
APA StyleZuma, M. K., Kolanisi, U., & Modi, A. T. (2018). The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. International Journal of Environmental Research and Public Health, 15(4), 805. https://doi.org/10.3390/ijerph15040805