Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014)
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Prevalences of Birth Defects During the Study Period
3.2. Congenital Anomalies of the Central Nervous System
3.3. Congenital Anomalies of Eye, Ear, Face and Neck
3.4. Congenital Anomalies of Lip and Palate
3.5. Congenital Anomalies of the Circulatory System
3.6. Congenital Anomalies of the Digestive System
3.7. Congenital Anomalies of the Urogenital System
3.8. Congenital Anomalies of the Musculoskeletal System
3.9. Chromosomal Anomalies
3.10. Ranking of Increasing Trends in Birth Defect Subtypes
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. World Birth Defects Day. Available online: https://www.cdc.gov/features/birth-defects-day (accessed on 26 February 2018).
- World Health Organization. Congenital Anomalies Fact Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs370/en (accessed on 26 February 2018).
- Dolk, H.; Loane, M.; Garne, E. The Prevalence of Congenital Anomalies in Europe. Adv. Exp. Med. Biol. 2010, 686, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Update on overall prevalence of major birth defects—Atlanta, Georgia, 1978–2005. Morb. Mortal. Wkly. Rep. MMWR 2008, 57, 1–5. [Google Scholar]
- Korea Institute for Health and Social Affairs. A Study on Producing Congenital Malformation Statistics; Korea Institute for Health and Social Affairs: Sejong, Korea, 2006; pp. 68–82. [Google Scholar]
- Choi, J.S.; Seo, K.; Han, Y.J.; Lee, S.W.; Bue, Y.K.; Lee, S.W.; Shin, C.W.; Lee, N.H. Congenital Anomaly Survey and Statistics; Korea Institute for Health and Social Affairs: Sejong, Korea, 2009; pp. 39–59. [Google Scholar]
- Park, J.W.; Jun, J.K.; Koo, J.N.; Seo, D.K.; Moon, J.B.; Suh, Y.H.; Kim, S.I.; Oh, K.J.; Hong, J.S.; Kim, B.J.; et al. Prevalence of Congenital Anomalies in Korea: Multi-Center Study. Korean J. Ultrasound Obstet. Gynecol. 2011, 13, 148–156. [Google Scholar]
- Loane, M.; Dolk, H.; Kelly, A.; Teljeur, C.; Greenlees, R.; Densem, J. EUROCAT statistical monitoring: Identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res. (Part A) 2011, 91, S31–S43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atta, C.A.M.; Fiest, K.M.; Frolkis, A.D.; Jette, N.; Pringsheim, T.; St Germaine-Smith, C.; Rajapakse, T.; Kaplan, G.G.; Metcalfe, A. Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am. J. Public Health 2016, 106, e24–e34. [Google Scholar] [CrossRef] [PubMed]
- Dastgiri, S.; Stone, D.H.; Le-Ha, C.; Gilmour, W.H. Prevalence and secular trend of congenital anomalies in Glasgow, UK. Arch. Dis. Child. 2002, 86, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.A.; Mahabir, R.C.; Jupiter, D.C.; Menezes, J.M. Updating the epidemiology of cleft lip with or without cleft palate. Plast. Reconstr. Surg. 2012, 129, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linde, D.; Konings, E.E.M.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Chul Kim, S.; Kyoung Kwon, S.; Pyo Hong, Y. Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: A comparison between industrialized areas of petrochemical estates and a non-industrialized area. Asian J. Androl. 2011, 13, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, D.K.; Leem, J.-H.; Park, M.; Kim, J.A.; Kim, H.C.; Kim, J.H.; Hong, Y.-C. Increased prevalence of some birth defects in Korea, 2009–2010. BMC Pregnancy Childbirth 2016, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Brent, R.L. Environmental Causes of Human Congenital Malformations: The Pediatrician’ s Role in Dealing With These Complex Clinical Problems Caused by a Multiplicity of Environmental and Genetic Factors. Pediatrics 2004, 113. [Google Scholar] [CrossRef]
- Lechat, M.F.; Dolk, H. Registries of congenital anomalies: EUROCAT. Environ. Health Perspect. 1993, 101, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.P.; Salemi, J.L.; Stuart, A.L.; Yu, H.; Jordan, M.M.; DuClos, C.; Cavicchia, P.; Correia, J.A.; Watkins, S.M.; Kirby, R.S. Associations between exposure to ambient benzene and PM2.5 during pregnancy and the risk of selected birth defects in offspring. Environ. Res. 2015, 142, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.R.; Yu, F.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A. Ambient air pollution and risk of birth defects in southern california. Am. J. Epidemiol. 2002, 155, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Agay-Shay, K.; Friger, M.; Linn, S.; Peled, A.; Amitai, Y.; Peretz, C. Air pollution and congenital heart defects. Environ. Res. 2013, 124, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.D.; Cai, Y.; Chan, W.; Symanski, E.; Mitchell, L.E.; Danysh, H.E.; Langlois, P.H.; Lupo, P.J. Air toxics and birth defects: A Bayesian hierarchical approach to evaluate multiple pollutants and spina bifida. Environ. Health 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, K.S.; Loffredo, C.A. A cluster of hypoplastic left heart malformation in Baltimore, Maryland. Pediatr. Cardiol. 2006, 27, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Shinde, M.U.; Zhan, F.B.; Gong, X.; Langlois, P.H. Maternal residential proximity to chlorinated solvent emissions and birth defects in offspring: A case-control study. Environ. Health 2014, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Koskenniemi, J.J.; Virtanen, H.E.; Kiviranta, H.; Damgaard, I.N.; Matomäki, J.; Thorup, J.M.; Hurme, T.; Skakkebaek, N.E.; Main, K.M.; Toppari, J. Association between levels of persistent organic pollutants in adipose tissue and cryptorchidism in early childhood: A case-control study. Environ. Health 2015, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Kalfa, N.; Paris, F.; Philibert, P.; Orsini, M.; Broussous, S.; Fauconnet-Servant, N.; Audran, F.; Gaspari, L.; Lehors, H.; Haddad, M.; et al. Is Hypospadias Associated with Prenatal Exposure to Endocrine Disruptors? A French Collaborative Controlled Study of a Cohort of 300 Consecutive Children Without Genetic Defect. Eur. Urol. 2015, 68, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Warembourg, C.; Botton, J.; Lelong, N.; Rouget, F.; Khoshnood, B.; Le Gléau, F.; Monfort, C.; Labat, L.; Pierre, F.; Heude, B.; et al. Prenatal exposure to glycol ethers and cryptorchidism and hypospadias: A nested case-control study. Occup. Environ. Med. 2018, 75, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cordier, S.; Lehébel, A.; Amar, E.; Anzivino-Viricel, L.; Hours, M.; Monfort, C.; Chevrier, C.; Chiron, M.; Robert-Gnansia, E. Maternal residence near municipal waste incinerators and the risk of urinary tract birth defects. Occup. Environ. Med. 2010, 67, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Cordier, S.; Chevrier, C.; Robert-Gnansia, E.; Lorente, C.; Brula, P.; Hours, M. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators. Occup. Environ. Med. 2004, 61, 8–15. [Google Scholar] [PubMed]
- Tain, Y.-L.; Luh, H.; Lin, C.-Y.; Hsu, C.-N. Incidence and Risks of Congenital Anomalies of Kidney and Urinary Tract in Newborns. Medicine (Baltimore) 2016, 95, e2659. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.; Boxall, J.; Maclellan, D.; Anderson, P.A.; Dodds, L.; Romao, R.L.P. A population-based study of prevalence trends and geospatial analysis of hypospadias and cryptorchidism compared with non-endocrine mediated congenital anomalies. J. Pediatr. Urol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Buck Louis, G.M.; Toppari, J.; Andersson, A.-M.; Eisenberg, M.L.; Jensen, T.K.; Jørgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2016, 96, 55–97. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, R.L.; Thornhill, B.A.; Forbes, M.S.; Kiley, S.C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 2010, 25, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Li, D.K.; Mueller, B.A.; Hickok, D.E.; Daling, J.R.; Fantel, A.G.; Checkoway, H.; Weiss, N.S. Maternal smoking during pregnancy and the risk of congenital urinary tract anomalies. Am. J. Public Health 1996, 86, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Shnorhavorian, M.; Bittner, R.; Wright, J.L.; Schwartz, S.M. Maternal Risk Factors for Congenital Urinary Anomalies: Results of a Population-based Case-control Study. Urology 2011, 78, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.-F.; Magnus, P.; Jaakkola, J.J.K. Risk of Specific Birth Defects in Relation to Chlorination and the Amount of Natural Organic Matter in the Water Supply. Am. J. Epidemiol. 2002, 156, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.D.; Birnbaum, L.S.; Pratt, R.M. TCDD-Induced hyperplasia of the ureteral epithelium produces hydronephrosis in murine fetuses. Teratology 1987, 35, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A.; Brenner, B.M. Low birth weight, nephron number, and kidney disease. Kidney Int. Suppl. 2005, 68, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.E.; Decamps, P.J.; Korst, L.M.; Platt, L.D.; Castro, L.C. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol. 2003, 188, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.A.; Yee, N.H.; Choi, J.S.; Choi, J.Y.; Seo, K. Prevalence of birth defects in Korean livebirths, 2005–2006. J. Korean Med. Sci. 2012, 27, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Bernier, P.L.; Stefanescu, A.; Samoukovic, G.; Tchervenkov, C.I. The challenge of congenital heart disease worldwide: Epidemiologic and demographic facts. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2010, 13, 26–34. [Google Scholar] [CrossRef] [PubMed]
- EUROCAT. Cases and Prevalence for All Full Member Registries from 2011 to 2015. Available online: http://www.eurocat-network.eu/accessprevalencedata/prevalencetables (accessed on 5 March 2018).
- Mai, C.T.; Isenburg, J.; Langlois, P.H.; Alverson, C.J.; Gilboa, S.M.; Rickard, R.; Canfield, M.A.; Anjohrin, S.B.; Lupo, P.J.; Deanna, R.; et al. Population-based birth defects data in the United States, 2008 to 2012: Presentation of state-specific data and descriptive biref on variability of prevalence. Birth Defects Res. A Clin. Mol. Teratol. 2015, 103, 972–993. [Google Scholar] [CrossRef] [PubMed]
- Cavadino, A.; Prieto-Merino, D.; Addor, M.C.; Arriola, L.; Bianchi, F.; Draper, E.; Garne, E.; Greenlees, R.; Haeusler, M.; Khoshnood, B.; et al. Use of hierarchical models to analyze European trends in congenital anomaly prevalence. Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Leirgul, E.; Fomina, T.; Brodwall, K.; Greve, G.; Holmstrøm, H.; Vollset, S.E.; Tell, G.S.; Øyen, N. Birth prevalence of congenital heart defects in Norway 1994-2009—A nationwide study. Am. Heart J. 2014, 168, 956–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited risk factors and congenital cardiovascular defects: Current knowledge—A scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liang, S.; Zhao, J.; Qian, Z.; Bassig, B.A.; Yang, R.; Zhang, Y.; Hu, K.; Xu, S.; Zheng, T.; et al. Maternal exposure to air pollutant PM 2.5 and PM 10 during pregnancy and risk of congenital heart defects. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhan, Y.; Wang, F.; Li, H.; Xie, L.; Liu, B.; Li, Y.; Mu, D.; Zheng, H.; Zhou, K.; et al. Parental occupational exposures to endocrine disruptors and the risk of simple isolated congenital heart defects. Pediatr. Cardiol. 2015, 36, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Snijder, C.A.; Vlot, I.J.; Burdorf, A.; Obermann-Borst, S.A.; Helbing, W.A.; Wildhagen, M.F.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. Congenital heart defects and parental occupational exposure to chemicals. Hum. Reprod. 2012, 27, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, S.M.; Desrosiers, T.A.; Lawson, C.; Lupo, P.J.; Riehle-Colarusso, T.J.; Stewart, P.A.; van Wijngaarden, E.; Waters, M.A.; Correa, A. National Birth Defects Prevention Study. Association between maternal occupational exposure to organic solvents and congenital heart defects, National Birth Defects Prevention Study, 1997–2002. Occup. Environ. Med. 2012, 69, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Salemi, J.L.; Tanner, J.P.; Ramakrishnan, R.; Feldkamp, M.L.; Marengo, L.K.; Meyer, R.E.; Druschel, C.M.; Rickard, R.; Kirby, R.S. Prevalence, Correlates, and Outcomes of Omphalocele in the United States, 1995–2005. Obstet. Gynecol. 2015, 126, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.E.; Lange, J.; Ittermann, T.; Napp, M.; Krueger, P.-C.; Bahlmann, H.; Kasch, R.; Heckmann, M. Population-based study of the incidence of congenital hip dysplasia in preterm infants from the Survey of Neonates in Pomerania (SNiP). BMC Pediatr. 2017, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.A.; Mineau, G.; Kerber, R.A.; Viskochil, D.H.; Schaefer, C.; Roach, J.W. Familial predisposition to developmental dysplasia of the hip. J. Pediatr. Orthop. 2009, 29, 463–466. [Google Scholar] [CrossRef] [PubMed]
Birth Defects(ICD-10) | Total | Male | Female | |||
---|---|---|---|---|---|---|
Number of Cases | Prevalence Per 10,000 (95%CI) | Number of Cases | Prevalence Per 10,000 (95%CI) | Number of Cases | Prevalence Per 10,000 (95%CI) | |
Birth | 3,208,617 | - | 1,650,689 | - | 1,557,928 | - |
Overall major birth defect | 143,196 | 446.3 (444–448.6) | 77,733 | 470.9 (467.6–474.2) | 65463 | 420.2 (417–423.4) |
Central nervous system | ||||||
Anencephaly (Q00.0–00.2) | 25 | 0.08 (0.05–0.12) | 15 | 0.09 (0.05–0.15) | 10 | 0.06 (0.03–0.12) |
Spina bifida (Q05.0–05.9) | 2759 | 8.6 (8.3–8.9) | 1330 | 8.1 (7.6–8.5) | 1429 | 9.2 (8.7–9.7) |
Encephalocele (Q01.0–01.9) | 182 | 0.57 (0.49–0.66) | 91 | 0.55 (0.44–0.68) | 91 | 0.58 (0.47–0.72) |
Microcephaly (Q02) | 1013 | 3.2 (3–3.4) | 467 | 2.8 (2.6–3.1) | 546 | 3.5 (3.2–3.8) |
Holoprosencephaly (Q04.0–04.2) | 251 | 0.78 (0.69–0.89) | 151 | 0.91 (0.77–1.07) | 100 | 0.64 (0.52–0.78) |
Congenital hydrocephalus (Q03.0–03.9) | 917 | 2.9 (2.7–3) | 561 | 3.4 (3.1–3.7) | 356 | 2.3 (2.1–2.5) |
Eye, ear, face and neck | ||||||
Anophthalmos (Q11.0–11.1) | 28 | 0.09 (0.06–0.13) | 15 | 0.09 (0.05–0.15) | 13 | 0.08 (0.04–0.14) |
Microphthalmos (Q11.2) | 150 | 0.47 (0.4–0.55) | 86 | 0.52 (0.42–0.64) | 64 | 0.41 (0.32–0.52) |
Congenital cataract (Q12.0) | 581 | 1.8 (1.7–2) | 302 | 1.8 (1.6–2) | 279 | 1.8 (1.6–2) |
Absence of iris (Q13.1) | 51 | 0.16 (0.12–0.21) | 28 | 0.17 (0.11–0.25) | 23 | 0.15 (0.09–0.22) |
Congenital glaucoma (Q15.0) | 267 | 0.83 (0.74–0.94) | 159 | 0.96 (0.82–1.13) | 108 | 0.69 (0.57–0.84) |
Anotia (Q16.0) | 150 | 0.47 (0.4–0.55) | 93 | 0.56 (0.45–0.69) | 57 | 0.37 (0.28–0.47) |
Microtia (Q17.2) | 929 | 2.9 (2.7–3.1) | 580 | 3.5 (3.2–3.8) | 349 | 2.2 (2–2.5) |
Lip, plate | ||||||
Cleft palate without cleft lip (Q35.1–35.9) | 3000 | 9.3 (9–9.7) | 1341 | 8.1 (7.7–8.6) | 1659 | 10.6 (10.1–11.2) |
Cleft lip with or without cleft palate (Q36.0–37.9) | 2309 | 7.2 (6.9–7.5) | 1395 | 8.5 (8–8.9) | 914 | 5.9 (5.5–6.3) |
Choanal atresia (Q30.0) | 144 | 0.45 (0.38–0.53) | 77 | 0.47 (0.37–0.58) | 67 | 0.43 (0.33–0.55) |
Circulatory system | ||||||
Common atrial trunk (Q20.0) | 75 | 0.23 (0.18–0.29) | 34 | 0.21 (0.14–0.29) | 41 | 0.26 (0.19–0.36) |
Translocation of great vessels (Q20.3) | 574 | 1.8 (1.6–1.9) | 415 | 2.5 (2.3–2.8) | 159 | 1.02 (0.87–1.19) |
Single ventricle (Q20.4) | 386 | 1.2 (1.1–1.3) | 214 | 1.3 (1.1–1.5) | 172 | 1.1 (0.9–1.3) |
Tetralogy of Fallot (Q21.3) | 1365 | 4.3 (4–4.5) | 777 | 4.7 (4.4–5.1) | 588 | 3.8 (3.5–4.1) |
Ventricular septal defect (Q21.0) | 20,082 | 62.6 (61.7–63.5) | 9466 | 57.3 (56.2–58.5) | 10,616 | 68.1 (66.9–69.5) |
Atrial septal defect (Q21.1) | 44,335 | 138.2 (136.9–139.5) | 21,544 | 130.5 (128.8–132.3) | 22,791 | 146.3 (144.4–148.2) |
Pulmonary valve atresia/stenosis (Q22.0, Q22.1) | 2846 | 8.9 (8.5–9.2) | 1312 | 7.9 (7.5–8.4) | 1534 | 9.8 (9.4–10.4) |
Tricuspid atresia/stenosis (Q22.4) | 88 | 0.27 (0.22–0.34) | 51 | 0.31 (0.23–0.41) | 37 | 0.24 (0.17–0.33) |
Ebstein’s anomaly (Q22.5) | 205 | 0.64 (0.55–0.73) | 109 | 0.66 (0.54–0.8) | 96 | 0.62 (0.5–0.75) |
Hypoplastic left heart syndrome (Q23.4) | 130 | 0.41 (0.34–0.48) | 77 | 0.47 (0.37–0.58) | 53 | 0.34 (0.25–0.44) |
Patent ductus arteriosus (Q25.0) | 13,209 | 41.2 (40.5–41.9) | 6364 | 38.6 (37.6–39.5) | 6845 | 43.9 (42.9–45) |
Coarctation of aorta (Q25.1) | 979 | 3.1 (2.9–3.2) | 571 | 3.5 (3.2–3.8) | 408 | 2.6 (2.4–2.9) |
Aortic valve atresia/stenosis (Q23.0) | 249 | 0.78 (0.68–0.88) | 168 | 1 (0.9–1.2) | 81 | 0.52 (0.41–0.65) |
Total anomalous pulmonary venous connection (Q26.2) | 349 | 1.1 (1–1.2) | 209 | 1.3 (1.1–1.4) | 140 | 0.9 (0.76–1.06) |
Digestive system | ||||||
Esophagus atresia with or without fistula (Q39.0, Q39.1) | 484 | 1.5 (1.4–1.6) | 286 | 1.7 (1.5–1.9) | 198 | 1.3 (1.1–1.5) |
Anorectal atresia/stenosis (Q42.0–42.3) | 1456 | 4.5 (4.3–4.8) | 819 | 5 (4.6–5.3) | 637 | 4.1 (3.8–4.4) |
Small intestine atresia/stenosis (Q41.0–41.9) | 968 | 3 (2.8–3.2) | 498 | 3 (2.8–3.3) | 470 | 3 (2.8–3.3) |
Duodenal atresia/stenosis (Q41.0) | 325 | 1 (0.9–1.1) | 148 | 0.9 (0.76–1.05) | 177 | 1.1 (1–1.3) |
Other small intestine atresia/stenosis (Q41.1–41.9) | 663 | 2.1 (1.9–2.2) | 361 | 2.2 (2–2.4) | 302 | 1.9 (1.7–2.2) |
Hirschsprung’s disease (Q43.1) | 2390 | 7.4 (7.2–7.8) | 1338 | 8.1 (7.7–8.6) | 1052 | 6.8 (6.4–7.2) |
Atresia of bile ducts (Q44.2) | 531 | 1.7 (1.5–1.8) | 248 | 1.5 (1.3–1.7) | 283 | 1.8 (1.6–2) |
Annular pancreas (Q45.1) | 51 | 0.16 (0.12–0.21) | 16 | 0.1 (0.06–0.16) | 35 | 0.22 (0.16–0.31) |
Genital organs | ||||||
Undescended testis (Q53.0–53.9) | 10,033 | 31.3 (30.7–31.9) | 10,031 | 60.8 (59.6–62) | 2 | 0.01 (0–0.05) |
Hypospadias (Q54.0–54.9) | 2104 | 6.6 (6.3–6.8) | 2102 | 12.7 (12.2–13.3) | 2 | 0.01 (0–0.05) |
Epispadias (Q64.0) | 23 | 0.07 (0.05–0.11) | 22 | 0.13 (0.08–0.2) | 1 | 0.01 (0–0.04) |
Indeterminate sex (Q56.0–56.4) | 392 | 1.2 (1.1–1.3) | 239 | 1.4 (1.3–1.6) | 153 | 0.98 (0.83–1.15) |
Urinary system | ||||||
Renal agenesis (Q60.0–60.6) | 945 | 2.9 (2.8–3.1) | 419 | 2.5 (2.3–2.8) | 526 | 3.4 (3.1–3.7) |
Exstrophy of urinary bladder (Q64.1) | 19 | 0.06 (0.04–0.09) | 8 | 0.05 (0.02–0.1) | 11 | 0.07 (0.04–0.13) |
Renal dysplasia (Q61.4) | 418 | 1.3 (1.2–1.4) | 174 | 1.1 (0.9–1.2) | 244 | 1.6 (1.4–1.8) |
Cystic kidney (Q61.0–61.9) | 1751 | 5.5 (5.2–5.7) | 830 | 5 (4.7–5.4) | 921 | 5.9 (5.5–6.3) |
Obstructive genitourinary defect (Q62.0–62.8, Q64.3) | 13,377 | 41.7 (41–42.4) | 9906 | 60 (58.8–61.2) | 3471 | 22.3 (21.5–23) |
Congenital hydronephrosis (Q62.0) | 10,719 | 33.4 (32.8–34) | 8171 | 49.5 (48.4–50.6) | 2548 | 16.4 (15.7–17) |
Musculoskeletal system | ||||||
Reduction deformity, upper limbs (Q71.0–71.9) | 234 | 0.73 (0.64–0.83) | 159 | 0.96 (0.82–1.13) | 75 | 0.48 (0.38–0.6) |
Reduction deformity, lower limbs (Q72.0–72.9) | 543 | 1.7 (1.6–1.8) | 237 | 1.4 (1.3–1.6) | 306 | 2 (1.8–2.2) |
Total Limb reduction defects/include unspecified (Q71.0–71.9, Q72.0–72.9, Q73.0–73.8) | 793 | 2.5 (2.3–2.6) | 409 | 2.5 (2.2–2.7) | 384 | 2.5 (2.2–2.7) |
Congenital hip dislocation (Q65.0–65.9) | 20,858 | 65 (64.1–65.9) | 7410 | 44.9 (43.9–45.9) | 13,448 | 86.3 (84.9–87.8) |
Club foot—talipes equinovarus (Q66.0) | 744 | 2.3 (2.2–2.5) | 388 | 2.4 (2.1–2.6) | 356 | 2.3 (2.1–2.5) |
Diaphragmatic hernia (Q79.0) | 408 | 1.3 (1.2–1.4) | 236 | 1.4 (1.3–1.6) | 172 | 1.1 (0.9–1.3) |
Polydactyly (Q69.0–69.9) | 4534 | 14.1 (13.7–14.5) | 2594 | 15.7 (15.1–16.3) | 1940 | 12.5 (11.9–13) |
Syndactyly (Q70.0–70.9) | 2756 | 8.6 (8.3–8.9) | 1590 | 9.6 (9.2–10.1) | 1166 | 7.5 (7.1–7.9) |
Arthrogryposis multiplex congenital (Q74.3) | 265 | 0.83 (0.73–0.93) | 151 | 0.91 (0.77–1.07) | 114 | 0.73 (0.6–0.88) |
Craniosynostosis (Q75.0) | 3891 | 12.1 (11.7–12.5) | 2335 | 14.1 (13.6–14.7) | 1556 | 10 (9.5–10.5) |
Jeune syndrome (Q77.2) | 8 | 0.02 (0.01–0.05) | 7 | 0.04 (0.02–0.09) | 1 | 0.01 (0–0.04) |
Achondroplasia/Hypochondroplasia (Q77.4) | 163 | 0.51 (0.43–0.59) | 88 | 0.53 (0.43–0.66) | 75 | 0.48 (0.38–0.6) |
Omphalocele (Q79.2) | 1345 | 4.2 (4–4.4) | 833 | 5 (4.7–5.4) | 512 | 3.3 (3–3.6) |
Gastroschisis (Q79.3) | 77 | 0.24 (0.19–0.3) | 31 | 0.19 (0.13–0.27) | 46 | 0.3 (0.22–0.39) |
Chromosomal abnormalities | ||||||
Trisomy 13 (Q91.4–91.7) | 16 | 0.05 (0.03–0.08) | 6 | 0.04 (0.01–0.08) | 10 | 0.06 (0.03–0.12) |
Trisomy 18 (Q91.0–91.3) | 67 | 0.21 (0.16–0.27) | 23 | 0.14 (0.09–0.21) | 44 | 0.28 (0.21–0.38) |
Down’s Syndrome (Q90.0–90.9) | 1301 | 4.1 (3.8–4.3) | 734 | 4.4 (4.1–4.8) | 567 | 3.6 (3.3–4) |
Turner’s syndrome (Q96.0–96.9) | 107 | 0.33 (0.27–0.4) | 24 | 0.15 (0.09–0.22) | 83 | 0.53 (0.42–0.66) |
Klinefelter’s syndrome (Q98.0–98.4) | 110 | 0.34 (0.28–0.41) | 109 | 0.66 (0.54–0.8) | 1 | 0.01 (0–0.04) |
Wolf-Hirschhorn syndrome (Q93.3) | 12 | 0.04 (0.02–0.07) | 6 | 0.04 (0.01–0.08) | 6 | 0.04 (0.01–0.08) |
Cri-du-chat syndrome (Q93.4) | 52 | 0.16 (0.12–0.21) | 22 | 0.13 (0.08–0.2) | 30 | 0.19 (0.13–0.27) |
Birth Defects | Prevalence Per 10,000 | Prevalence Rate Ratio | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||||
Major 69 birth defects | 336.4 | 372.9 | 401.2 | 445.6 | 474.2 | 539.8 | 563.6 | 1.091 (1.088–1.094) | <0.001 | |
1 | Renal dysplasia | 0.43 | 0.49 | 0.96 | 1.55 | 1.75 | 1.97 | 2.00 | 1.275 (1.211–1.343) | <0.001 |
2 | Omphalocele | 1.46 | 2.07 | 2.11 | 5.60 | 5.82 | 6.00 | 6.38 | 1.265 (1.23–1.302) | <0.001 |
3 | Congenital hip dislocation | 41.79 | 44.96 | 48.03 | 58.23 | 66.27 | 95.86 | 103.67 | 1.185 (1.177–1.194) | <0.001 |
4 | Reduction deformity, lower limbs | 0.94 | 1.24 | 1.02 | 1.66 | 1.65 | 3.85 | 1.61 | 1.184 (1.133–1.237) | <0.001 |
5 | Atrial septal defect | 83.20 | 103.68 | 116.36 | 141.49 | 157.82 | 179.58 | 188.85 | 1.143 (1.138–1.149) | <0.001 |
6 | Craniosynostosis | 7.34 | 9.82 | 10.15 | 12.77 | 16.30 | 16.13 | 12.38 | 1.108 (1.09–1.126) | <0.001 |
7 | Spina bifida | 6.03 | 6.41 | 7.51 | 9.55 | 10.71 | 9.00 | 10.98 | 1.103 (1.082–1.124) | <0.001 |
8 | Renal agenesis | 2.00 | 2.34 | 2.59 | 3.63 | 2.97 | 3.16 | 3.97 | 1.102 (1.067–1.138) | <0.001 |
9 | Undescended testis | 45.56 | 51.80 | 56.61 | 58.32 | 66.88 | 72.05 | 74.32 | 1.082 (1.072–1.093) | <0.001 |
10 | Single ventricle | 0.82 | 1.06 | 1.11 | 1.29 | 1.59 | 1.28 | 1.26 | 1.072 (1.019–1.128) | 0.007 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.-K.; Lamichhane, D.K.; Kim, H.-C.; Leem, J.-H. Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014). Int. J. Environ. Res. Public Health 2018, 15, 923. https://doi.org/10.3390/ijerph15050923
Ko J-K, Lamichhane DK, Kim H-C, Leem J-H. Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014). International Journal of Environmental Research and Public Health. 2018; 15(5):923. https://doi.org/10.3390/ijerph15050923
Chicago/Turabian StyleKo, Jung-Keun, Dirga Kumar Lamichhane, Hwan-Cheol Kim, and Jong-Han Leem. 2018. "Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014)" International Journal of Environmental Research and Public Health 15, no. 5: 923. https://doi.org/10.3390/ijerph15050923
APA StyleKo, J. -K., Lamichhane, D. K., Kim, H. -C., & Leem, J. -H. (2018). Trends in the Prevalences of Selected Birth Defects in Korea (2008–2014). International Journal of Environmental Research and Public Health, 15(5), 923. https://doi.org/10.3390/ijerph15050923