Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Psychological Stress Scores
3.2. ECG Data
3.3. Cognitive Performance
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lazarus, R.S.; Folkman, S. Stress, Coping and Adaptation; Springer: New York, NY, USA, 1984. [Google Scholar]
- Cannon, W.B. Stresses and strains of homeostasis. Am. J. Med. Sci. 1935, 189, 1–14. [Google Scholar] [CrossRef]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation 1996, 93, 1043–1065.
- Schwab, J.O.; Eichner, G.; Schmitt, H.; Weber, S.; Coch, M.; Waldecker, B. The relative contribution of the sinus and AV node to heart rate variability. Heart 2003, 89, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term hrv analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Vlemincx, E.; Spaepen, A.; Van Huffel, S. Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur. J. Appl. Physiol. 2011, 111, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Padgett, D.A.; Glaser, R. How stress influences the immune response. Trends Immunol. 2003, 24, 444–448. [Google Scholar] [CrossRef]
- McEwen, B.S.; Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995, 5, 205–216. [Google Scholar] [CrossRef]
- Kahana, M.; Loftus, G. Response Time versus Accuracy in Human Memory. In The Nature of Cognition; Massachusetts Institute of Technology: Cambridge, MA, USA, 1999; pp. 322–384. [Google Scholar]
- Beste, C.; Yildiz, A.; Meissner, T.W.; Wolf, O.T. Stress improves task processing efficiency in dual-tasks. Behav. Brain Res. 2013, 252, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Saar-Ashkenazy, R.; Cohen, J.E.; Guez, J.; Gasho, C.; Shelef, I.; Friedman, A.; Shalev, H. Reduced corpus-callosum volume in posttraumatic stress disorder highlights the importance of interhemispheric connectivity for associative memory. J. Trauma. Stress 2014, 27, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Jou, R.-C.; Kuo, C.-W.; Tang, M.-L. A study of job stress and turnover tendency among air traffic controllers: The mediating effects of job satisfaction. Transp. Res. Part E 2013, 57, 95–104. [Google Scholar] [CrossRef]
- Inoue, S.; Furuta, K.; Nakata, K.; Kanno, T.; Aoyama, H.; Brown, M. Cognitive process modelling of controllers in en route air traffic control. Ergonomics 2012, 55, 450–464. [Google Scholar] [CrossRef] [PubMed]
- International Civil Aviation Organization (ICAO). ICAO’s Annual Report of the Council; International Civil Aviation Organization (ICAO): Montreal, QC, Canada, 2016. [Google Scholar]
- NAV Portugal. Lisbon FIR: Total IFR Movements. Available online: https://www.nav.pt/nav/quem-somos/dados-de-tr%C3%A1fego/riv-lisboa-2014 (accessed on 10 July 2017).
- Giovanni, C. Occupational Stress and Stress Prevention in Air Traffic Control; International Labour Organization: Geneva, Switzerland, 1996; pp. 1–36. [Google Scholar]
- Koros, A.; Northrop Grumman Information Technology; Panjwani, G.; Ingurgio, V.; D’Arcy, J.F. Complexity in Air Traffic Control Towers: A Field Study Part 1. Complexity Factors; U.S. Department of Transportation Federal Aviation Administration: Springfield, VA, USA, 2003; pp. 1–125.
- Ribas, V.R.; Martins, H.A.d.L.; Viana, M.T.; Fraga, S.d.N.; Carneiro, S.M.d.O.; Galvão, B.H.A.; Bezerra, A.A.; de Castro, C.M.M.B.; Sougey, E.B.; de Castro, R.M. Hematological and immunological effects of stress of air traffic controllers in northeastern brazil. Revista Brasileira de Hematologia e Hemoterapia 2011, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Ellenbogen, M.A.; Schwartzman, A.E.; Stewart, J.; Walker, C.D. Stress and selective attention: The interplay of mood, cortisol levels, and emotional information processing. Psychophysiology 2002, 39, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Schuver-van Blanken, M.; Huisman, H.; Roerdink, M. The ATC cognitive process and operational situation model: A model for analysing cognitive complexity in atm. In Proceedings of the 29th Conference of the European Association for Aviation Psychology, Budapest, Hungary, 20–24 September 2010. [Google Scholar]
- Isaac, A.R.; Ruitenberg, B. Air Traffic Control: Human Performance Factors; Routledge: New York, USA, 2016. [Google Scholar]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). Human Factors Guidelines for Safety Audits Manual; International Civil Aviation Organization (ICAO): Montreal, QC, Canada, 2002. [Google Scholar]
- Pawlak, W.S.; Brinton, C.; Crouch, K.; Lancaster, K.M. A Framework for the Evaluation of Air Traffic Control Complexity; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996; pp. 1–11. [Google Scholar]
- Yang, S.-W.; Hu, M.-H. Estimation of air traffic longitudinal conflict probability based on the reaction time of controllers. Saf. Sci. 2010, 48, 926–930. [Google Scholar]
- Isaac, A.; Shorrock, S.T.; Kirwan, B. Human error in European air traffic management: The HERA project. Reliab. Eng. Syst. Saf. 2002, 75, 257–272. [Google Scholar] [CrossRef]
- Cunha, J.P.S.; Cunha, B.; Pereira, A.S.; Xavier, W.; Ferreira, N.; Meireles, L.A. Vital jacket: A wearable wireless vital signs monitor for patients’ mobility in cardiology and sports. In Proceedings of the 4th International ICST Conference on Pervasive Computing Technologies for Healthcare, Munich, Germany, 22–25 March 2010. [Google Scholar]
- Cunha, J.P.S. Phealth and wearable technologies: A permanent challenge. In Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2012; pp. 185–195. [Google Scholar]
- Biodevices, S.A. Certifications. Available online: http://www.vitaljacket.com (accessed on 20 January 2017).
- Marteau, T.M.; Bekker, H. The development of a six-item short-form of the state scale of the spielberger state-trait anxiety inventory (STAI). Br. J. Clin. Psychol. 1992, 31 (Pt 3), 301–306. [Google Scholar] [CrossRef] [PubMed]
- Lesage, F.X.; Berjot, S.; Deschamps, F. Clinical stress assessment using a visual analogue scale. Occup. Med. 2012, 62, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Weissman, D.H.; Roberts, K.C.; Visscher, K.M.; Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 2006, 9, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘trier social stress test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Birkett, M.A. The trier social stress test protocol for inducing psychological stress. J. Vis. Exp. 2011, 56, 3238. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Bio-Med. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D.; Azuaje, F.; McSharry, P. Advanced Methods and Tools for ECG Data Analysis; Artech House, Inc.: Norwood, MA, USA, 2006. [Google Scholar]
- Mietus, J.; Peng, C.; Henry, I.; Goldsmith, R.; Goldberger, A. The PNNX files: Re-examining a widely used heart rate variability measure. Heart 2002, 88, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Schaaff, K.; Adam, M.T. Measuring emotional arousal for online applications: Evaluation of ultra-short term heart rate variability measures. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2–5 September 2013; pp. 362–368. [Google Scholar]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS, 4th ed.; McGrawHill: New York, NY, USA, 2011. [Google Scholar]
- Georgieva, K.; Georgieva, P.; Ribeiro, M.; Georgieva, O.; Paiva, J.S. Regression approach for automatic detection of attention lapses. In Proceedings of the 8th IEEE International Conference on Intelligent Systems IS’16, Sofia, Bulgaria, 4–6 September 2016. [Google Scholar]
- Olver, J.S.; Pinney, M.; Maruff, P.; Norman, T.R. Impairments of spatial working memory and attention following acute psychosocial stress. Stress Health 2015, 31, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Tharion, E.; Parthasarathy, S.; Neelakantan, N. Short-term heart rate variability measures in students during examinations. Natl. Med. J. India 2009, 22, 63–66. [Google Scholar] [PubMed]
- Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.B.; Dimsdale, J.E. Effects of stress on heart rate complexity—A comparison between short-term and chronic stress. Biol. Psychol. 2009, 80, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Bhalla, P.; Bajaj, S.K.; Sanya, S.; Babbar, R. Effect of physical and mental stress on heart rate variability in type-a and type-b personalities. Indian J. Appl. Basic Med. Sci. 2013, 15, 1–13. [Google Scholar]
Domain | Measure | Description | Features Trend under Stress |
---|---|---|---|
Time-domain | AVNN | Average of NN intervals (ms) | ↓ |
SDNN | Standard Deviation of all NN intervals (ms) | ↓↑ | |
RMSSD | Root mean square of differences of successive NN intervals (ms) | ↓ | |
pNN50 | NN variations above 50 ms (%) | ↓ | |
Frequency-domain | LF/HF | Ratio of Low Frequency and High Frequency power band | ↑ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, S.; Paiva, J.S.; Dias, D.; Aleixo, M.; Filipe, R.M.; Cunha, J.P.S. Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform. Int. J. Environ. Res. Public Health 2018, 15, 1080. https://doi.org/10.3390/ijerph15061080
Rodrigues S, Paiva JS, Dias D, Aleixo M, Filipe RM, Cunha JPS. Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform. International Journal of Environmental Research and Public Health. 2018; 15(6):1080. https://doi.org/10.3390/ijerph15061080
Chicago/Turabian StyleRodrigues, Susana, Joana S. Paiva, Duarte Dias, Marta Aleixo, Rui Manuel Filipe, and João Paulo S. Cunha. 2018. "Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform" International Journal of Environmental Research and Public Health 15, no. 6: 1080. https://doi.org/10.3390/ijerph15061080
APA StyleRodrigues, S., Paiva, J. S., Dias, D., Aleixo, M., Filipe, R. M., & Cunha, J. P. S. (2018). Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform. International Journal of Environmental Research and Public Health, 15(6), 1080. https://doi.org/10.3390/ijerph15061080