Persistence of Salmonella Typhimurium in Well Waters from a Rural Area of Changchun City, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Well Water Sampling and Characterization
2.3. S. Typhimurium Strain
2.4. Growth and Numeration of S. Typhimurium
2.5. Survival Data Modeling
2.6. Statistical Analysis
3. Results
3.1. Well Water Characterization
3.2. Survival Profiles of S. Typhimurium in Well Waters
3.3. Cluster Analysis
3.4. Principal Component Analysis of Survival Data and Water Properties
3.5. Multiple Stepwise Regression Analysis
3.6. Path Analysis
3.7. Canonical Correspondence Analysis and Variation Partition Analysis
3.8. Linear Correlation of ttd with δ and p
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Scallan, E.; Crim, S.M.; Runkle, A.; Henao, O.L.; Mahon, B.E.; Hoekstra, R.M.; Griffin, P.M. Bacterial enteric infections among older adults in the united states: Foodborne diseases active surveillance network, 1996–2012. Foodborne Pathog. Dis. 2015, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Risk Assessments of Salmonella in Eggs and Broiler Chickens. Available online: http://www.fao.org/3/a-y4392e.pdf (accessed on 26 May 2018).
- Magistrali, C.; Dionisi, A.M.; De, C.P.; Cucco, L.; Vischi, O.; Scuota, S.; Zicavo, A.; Pezzotti, G. Contamination of Salmonella spp. In a pig finishing herd, from the arrival of the animals to the slaughterhouse. Res. Vet. Sci. 2008, 85, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Voetsch, A.C.; Van Gilder, T.J.; Angulo, F.J.; Farley, M.M.; Shallow, S.; Marcus, R.; Cieslak, P.R.; Deneen, V.C.; Tauxe, R.V.; FoodNe, E.I.P. Foodnet estimate of the burden of illness caused by nontyphoidal salmonella infections in the united states. Clin. Infect. Dis. 2004, 38, S127–S134. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qu, D.; Zhang, X.; Shen, J.; Cui, S.; Shi, Y.; Xi, M.; Sheng, M.; Zhi, S.; Meng, J. Prevalence and characterization of salmonella serovars in retail meats of marketplace in shaanxi, china. Int. J. Food Microbiol. 2010, 141, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.J.; Huang, Y.; Huang, C.J. Application of pulsed field gel electrophoresis to source-tracking of salmonella typhimurium strains isolated from a food poisoning accident. J. Appl. Prev. Med. 2009, 5, 2. [Google Scholar]
- Ailes, E.; Budge, P.; Shankar, M.; Collier, S.; Brinton, W.; Cronquist, A.; Chen, M.; Thornton, A.; Beach, M.J.; Brunkard, J.M. Economic and health impacts associated with a salmonella typhimurium drinking water outbreak-alamosa, co, 2008. PLoS ONE 2013, 8, e57439. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H. An outbreak caused by salmonella typhimurium from contaminated well water. Zhejiang Prev. Med. 1997, 9, 63. [Google Scholar]
- Dekker, D.M.; Krumkamp, R.; Sarpong, N.; Frickmann, H.; Boahen, K.G.; Frimpong, M.; Asare, R.; Larbi, R.; Hagen, R.M.; Poppert, S.; et al. Drinking water from dug wells in rural ghana-salmonella contamination, environmental factors, and genotypes. Int. J. Environ. Res. Public Health 2015, 12, 3535–3546. [Google Scholar] [CrossRef] [PubMed]
- Samarajeewa, A.D.; Glasauer, S.M.; Lauzon, J.D.; O’Halloran, I.P.; Parkin, G.W.; Dunfield, K.E. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure. Can. J. Microbiol. 2012, 58, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Kozlica, J.; Claudet, A.L.; Solomon, D.; Dunn, J.R.; Carpenter, L.R. Waterborne outbreak of salmonella I 4, 5, 12:I. Foodborne Pathog. Dis. 2010, 7, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.A.; Mena, K.D.; Gerba, C.P. Risk of waterborne illness via drinking water in the united states. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2008; pp. 117–158. [Google Scholar]
- Moresco, V.; Viancelli, A.; Nascimento, M.A.; Souza, D.S.; Ramos, A.P.; Garcia, L.A.; Simões, C.M.; Barardi, C.R. Microbiological and physicochemical analysis of the coastal waters of southern brazil. Mar. Poll. Bull. 2011, 64, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Strauss, B.; King, W.; Ley, A.; Hoey, J.R. A prospective study of rural drinking water quality and acute gastrointestinal illness. BMC Public Health 2001, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Li, J.; Liu, X.; Li, H.; Zhang, R.; Ma, J. Exploring links between water quality and E. coli o157:H7 survival potential in well waters from a rural area of southern changchun city, china. J. Water Health 2018, 16, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ibekwe, A.M.; Yi, X.; Wang, H.; Yamazaki, A.; Crowley, D.E.; Yang, C.H. Persistence of Escherichia coli o157:H7 and its mutants in soils. PLoS ONE 2011, 6, e23191. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.; Hammes, F.; Egli, T. Escherichia coli o157 can grow in natural freshwater at low carbon concentrations. Environ. Microbiol. 2008, 10, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.; Stucki, D.; Egli, T.; Hammes, F. Evaluating the growth potential of pathogenic bacteria in water. Appl. Environ. Microbiol. 2010, 76, 6477–6484. [Google Scholar] [CrossRef] [PubMed]
- Mafart, P.; Leguérinel, I.; Couvert, O. On calculating sterility in thermal preservation methods: Application of the weibull frequency distribution model. Int. J. Food Microbiol. 2001, 81, 1691–1699. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. Ginafit, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.P.S. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, A.; Gustavsson, A.; Ulén, B.; Mattsson, L.; Brink, N. Växtnäringsförluster i Västergötland och Stergötland. Vävtnäringsförluster från åker och skog i Södermanland. Nitrat, Nitrit och ph i Dricksvatten i Västergötland, Stergötland och Södermanland. Gödslingsprognoser för Kväve; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1982. [Google Scholar]
- Frank, R.; Chapman, N.; Johnson, R. Survey of farm wells for nutrients and minerals, Ontario, Canada, 1986 and 1987. Bull. Environ. Contam. Toxicol. 1991, 47, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Leena, K.K.; Mirjami, N.; Helvi, H.-T.; Martikainen, P.J.; Salonen, L.; Irmeli, T. Groundwater quality in wells in central rural finland: A microbiological and radiochemical survey. Ambio 1996, 25, 343–349. [Google Scholar]
- Domingo, J.W.S.; Harmon, S.; Bennett, J. Survival of salmonella species in river water. Curr. Microbiol. 2000, 40, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Cevallos, J.M.; Gu, G.Y.; Richardson, S.M.; Hu, J.H.; van Bruggen, A.H.C. Survival of salmonella enterica typhimurium in water amended with manure. J. Food Prot. 2014, 77, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.V.; van Overbeek, L.; van Bruggen, A.H.C. Percolation and survival of Escherichia coli o157:H7 and salmonella enterica serovar typhimurium in soil amended with contaminated dairy manure or slurry. Appl. Environ. Microbiol. 2009, 75, 3206–3215. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ibekwe, A.M.; Crowley, D.E.; Yang, C.-H. Persistence of Escherichia coli o157:H7 in major leafy green producing soils. Environ. Sci. Technol. 2012, 46, 12154–12161. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.C.; Martinez, E.; Gay, J.M.; Rice, D.H. Survival of salmonella enterica in freshwater and sediments and transmission by the aquatic midge chironomus tentans (chironomidae: Diptera). Appl. Environ. Microbiol. 2003, 69, 4556–4560. [Google Scholar] [CrossRef] [PubMed]
- Artz, R.R.; Killham, K. Survival of Escherichia coli o157:H7 in private drinking water wells: Influences of protozoan grazing and elevated copper concentrations. FEMS Microbiol. Lett. 2002, 216, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Z.; Ibekwe, A.M.; Ma, J.C.; Wu, L.S.; Lou, J.; Wu, Z.G.; Liu, R.Y.; Xu, J.M.; Yates, S.R. A glimpse of Escherichia coli o157:H7 survival in soils from eastern china. Sci. Total Environ. 2014, 476, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.E.; Schimel, J.P.; Firestone, M.K. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol. Biochem. 1989, 21, 409–415. [Google Scholar] [CrossRef]
- Recous, S.; Mary, B.; Faurie, G. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol. Biochem. 1990, 22, 913–922. [Google Scholar] [CrossRef]
- Recous, S.; Machet, J.M.; Mary, B. The partitioning of fertilizer-n between soil and crop: Comparison of ammonium and nitrate applications. Plant Soil 1992, 144, 101–111. [Google Scholar] [CrossRef]
- Rice, C.W.; Tiedje, J.M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol. Biochem. 1989, 21, 597–602. [Google Scholar] [CrossRef]
- Leclerc, H.; Schwartzbrod, L.; Dei-Cas, E. Microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 2002, 28, 371–409. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ibekwe, A.M.; Yang, C.-H.; Crowley, D.E. Influence of bacterial communities based on 454-pyrosequencing on the survival of Escherichia coli o157:H7 in soils. FEMS Microbiol. Ecol. 2013, 84, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Nauta, M.J.; Dufrenne, J.B. Variability in growth characteristics of different E. coli o157:H7 isolates, and its implications for predictive microbiology. Quant. Microbiol. 1999, 1, 137–155. [Google Scholar] [CrossRef]
- Foppen, J.W.A.; Schijven, J.F. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res. 2006, 40, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Inglis, T.J.J.; Sagripanti, J.-L. Environmental factors that affect the survival and persistence of burkholderia pseudomallei. Appl. Environ. Microbiol. 2006, 72, 6865–6875. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Mark Ibekwe, A.; Crowley, D.E.; Yang, C.-H. Persistence of Escherichia coli o157 and non-o157 strains in agricultural soils. Sci. Total Environ. 2014, 490, 822–829. [Google Scholar] [CrossRef] [PubMed]
- John, D.E.; Rose, J.B. Review of factors affecting microbial survival in groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Village | Depth (m) | Temp (°C) | pH | EC (S/m) | TOC (mg/L) | TN (mg/L) | NH4+–N (mg/L) | NO3−–N (mg/L) | TP (mg/L) | Fe (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
s1 | Xinlicheng | 15 | 7.2 | 6.97 | 22.4 | 3.61 | 20.2 | 0.300 | 6.59 | 0.137 | 0.015 |
s2 | Changshan | 50 | 7.8 | 7.36 | 45.5 | 1.35 | 25.4 | 0.357 | 4.16 | 0.123 | 0.025 |
s3 | Xinnong | 20 | 7.5 | 7.20 | 125 | 2.60 | 62.8 | 0.150 | 54.5 | 0.042 | 0.022 |
s4 | Liushu | 40 | 7.5 | 7.32 | 20.6 | 1.10 | 21.0 | 0.101 | 1.05 | 0.023 | 0.258 |
s5 | Yanjia | 40 | 8.4 | 7.28 | 28.6 | 0.681 | 23.8 | 0.212 | 8.37 | 0.049 | 0.021 |
s6 | Xinxingxiang | 40 | 8.9 | 6.38 | 29.3 | 0.120 | 17.0 | 0.329 | 0.483 | 0.012 | 0.089 |
s7 | Yushu | 34 | 7.9 | 6.60 | 20.1 | 0.715 | 17.2 | 0.254 | 2.52 | 0.056 | 1.575 |
s8 | Xintun | 20 | 8.1 | 6.82 | 50.7 | 1.80 | 7.29 | 0.158 | 0.800 | 0.002 | 0.027 |
s9 | Yueshan | 15 | 7.9 | 7.38 | 82.2 | 2.69 | 49.1 | 0.696 | 19.8 | 0.028 | 0.017 |
s10 | Lvhua | 5 | 5.5 | 7.40 | 52.0 | 1.38 | 29.4 | 0.367 | 27.9 | 0.026 | 0.016 |
s11 | Nonglin | 7 | 5.4 | 6.53 | 69.8 | 0.363 | 21.1 | 0.290 | 19.5 | 0.007 | 0.038 |
s12 | Yongjiu | 10 | 7.2 | 7.12 | 12.3 | 2.34 | 62.2 | 0.228 | 59.2 | 0.023 | 0.022 |
s13 | Changlingzi | 60 | 7.8 | 7.23 | 92.0 | 2.19 | 34.4 | 0.422 | 27.2 | 0.004 | ND |
s14 | Pingan | 60 | 7.7 | 6.95 | 19.6 | 0.382 | 12.2 | 0.282 | 10.6 | 0.011 | 0.003 |
s15 | Yihe | 50 | 7.4 | 6.82 | 18.3 | 0.001 | 20.2 | 0.212 | 9.24 | 0.009 | 0.066 |
Regression Equation | R2 | F Value | T Value and Partial Correlation Coefficients (r) | ||
---|---|---|---|---|---|
T Value | r | ||||
ttd = −114.4(±66.4) + 19.4(±9.6) × pH + 66.9(±22.4) × NH4+–N | 0.580 | 8.280 ** | pH | 2.017 · | 0.387 |
NH4+–N | 2.988 * | 0.574 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ding, M.; Han, Z.; Ma, J. Persistence of Salmonella Typhimurium in Well Waters from a Rural Area of Changchun City, China. Int. J. Environ. Res. Public Health 2018, 15, 1090. https://doi.org/10.3390/ijerph15061090
Li J, Ding M, Han Z, Ma J. Persistence of Salmonella Typhimurium in Well Waters from a Rural Area of Changchun City, China. International Journal of Environmental Research and Public Health. 2018; 15(6):1090. https://doi.org/10.3390/ijerph15061090
Chicago/Turabian StyleLi, Jiahang, Meiyue Ding, Ziming Han, and Jincai Ma. 2018. "Persistence of Salmonella Typhimurium in Well Waters from a Rural Area of Changchun City, China" International Journal of Environmental Research and Public Health 15, no. 6: 1090. https://doi.org/10.3390/ijerph15061090
APA StyleLi, J., Ding, M., Han, Z., & Ma, J. (2018). Persistence of Salmonella Typhimurium in Well Waters from a Rural Area of Changchun City, China. International Journal of Environmental Research and Public Health, 15(6), 1090. https://doi.org/10.3390/ijerph15061090