Drivers Are More Physically Active Than Non-Drivers in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Questionnaire Data
2.3. Accelerometry
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Descriptive Data of Accelerometers
3.3. Results of Analysis of Covariance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sugiyama, T.; Ding, D.; Owen, N. Commuting by car: Weight gain among physically active adults. Am. J. Prev. Med. 2013, 44, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Wijndaele, K.; Koohsari, M.J.; Tanamas, S.K.; Dunstan, D.W.; Owen, N. Adverse associations of car time with markers of cardio-metabolic risk. Prev. Med. 2016, 83, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.N.; Heady, J.A.; Raffle, P.A.B.; Roberts, C.G.; Parks, J.W. Coronary heart-disease and physical activity of work. Lancet 1958, 262, 1111–1120. [Google Scholar] [CrossRef]
- Wen, L.M.; Orr, N.; Millett, C.; Rissel, C. Driving to work and overweight and obesity: Findings from the 2003 New South Wales Health Survey, Australia. Int. J. Obes. (Lond.) 2006, 30, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Warren, T.Y.; Barry, V.; Hooker, S.P.; Sui, X.; Church, T.S.; Blair, S.N. Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med. Sci. Sports Exerc. 2010, 42, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Mutrie, N.; Carney, C.; Blamey, A.; Crawford, F.; Aitchison, T.; Whitelaw, A. “Walk in to Work Out”: A randomised controlled trial of a self help intervention to promote active commuting. J. Epidemiol. Community Health 2002, 56, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.E.; Green, J.M.; Petticrew, M.P.; Steinbach, R.; Roberts, H. What are the health benefits of active travel? A systematic review of trials and cohort studies. PLoS ONE 2013, 8, e69912. [Google Scholar] [CrossRef] [PubMed]
- Collia, D.V.; Sharp, J.; Giesbrecht, L. The 2001 National Household Travel Survey: A look into the travel patterns of older Americans. J. Saf. Res. 2003, 34, 461–470. [Google Scholar] [CrossRef]
- Cabinet Office. Results of Survey on the Senior Citizens’ Lifestyle; Cabinet Office: Tokyo, Japan, 2015. [Google Scholar]
- Choi, M.; Lohman, M.C.; Mezuk, B. Trajectories of cognitive decline by driving mobility: Evidence from the Health and Retirement Study. Int. J. Geriatr. Psychiatry 2014, 29, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Fonda, S.J.; Wallace, R.B.; Herzog, A.R. Changes in driving patterns and worsening depressive symptoms among older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2001, 56, S343–S351. [Google Scholar] [CrossRef] [PubMed]
- Marottoli, R.A.; Mendes de Leon, C.F.; Glass, T.A.; Williams, C.S.; Cooney, L.M., Jr.; Berkman, L.F.; Tinetti, M.E. Driving cessation and increased depressive symptoms: Prospective evidence from the New Haven EPESE. Established Populations for Epidemiologic Studies of the Elderly. J. Am. Geriatr. Soc. 1997, 45, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Ragland, D.R.; Satariano, W.A.; MacLeod, K.E. Driving cessation and increased depressive symptoms. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.D.; Lunsman, M.; Perkins, M.; Rebok, G.W.; Roth, D.L. Driving cessation and health trajectories in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.; Kerr, J.; Rosenberg, D.; King, A. Healthy aging and where you live: Community design relationships with physical activity and body weight in older Americans. J. Phys. Act. Health 2010, 7 (Suppl. 1), S82–S90. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Sallis, J.F.; Norman, G.J.; Frank, L.D.; Saelens, B.E.; Kerr, J.; Conway, T.L.; Cain, K.; Hovell, M.F.; Hofstetter, C.R.; et al. Neighborhood environment and physical activity among older adults: Do the relationships differ by driving status? J. Aging Phys. Act. 2014, 22, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Amagasa, S.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Oka, K.; Inoue, S. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Hawkesworth, S.; Silverwood, R.J.; Armstrong, B.; Pliakas, T.; Nanchalal, K.; Jefferis, B.J.; Sartini, C.; Amuzu, A.A.; Wannamethee, S.G.; Ramsay, S.E.; et al. Investigating associations between the built environment and physical activity among older people in 20 UK towns. J. Epidemiol. Community Health 2018, 72, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Berkemeyer, K.; Wijndaele, K.; White, T.; Cooper, A.J.; Luben, R.; Westgate, K.; Griffin, S.J.; Khaw, K.T.; Wareham, N.J.; Brage, S. The descriptive epidemiology of accelerometer-measured physical activity in older adults. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Papacosta, O.; Morris, R.W.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: Does volume of activity matter more than pattern of accumulation? Br. J. Sports Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dohrn, I.M.; Kwak, L.; Oja, P.; Sjostrom, M.; Hagstromer, M. Replacing sedentary time with physical activity: A 15-year follow-up of mortality in a national cohort. Clin. Epidemiol. 2018, 10, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Ricci, C.; Baumeister, S.E.; Leitzmann, M.F. Replacing Sedentary Time with Physical Activity in Relation to Mortality. Med. Sci. Sports Exerc. 2016, 48, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo-Cruz, J.; García-Hermoso, A.; Alfonso-Rosa, R.M.; Álvarez-Barbosa, F.; Owen, N.; Chastin, S.; Pozo-Cruz, B. Replacing Sedentary Time: Meta-Analysis of Objective-Assessment Studies. Am. J. Prev. Med. 2018, in press. [Google Scholar]
- Stubbs, B.; Chen, L.J.; Chang, C.Y.; Sun, W.J.; Ku, P.W. Accelerometer-assessed light physical activity is protective of future cognitive ability: A longitudinal study among community dwelling older adults. Exp. Gerontol. 2017, 91, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Parsons, T.J.; Sartini, C.; Ash, S.; Lennon, L.T.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care 2007, 30, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Ohya, Y.; Odagiri, Y.; Takamiya, T.; Kamada, M.; Okada, S.; Oka, K.; Kitabatake, Y.; Nakaya, T.; Sallis, J.F.; et al. Perceived neighborhood environment and walking for specific purposes among elderly Japanese. J. Epidemiol. 2011, 21, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, Y.; Okubo, T.; Ohde, S.; Jacobs, J.; Takahashi, O.; Omata, F.; Yanai, H.; Hinohara, S.; Fukui, T. Assessing items on the SF-8 Japanese version for health-related quality of life: A psychometric analysis based on the nominal categories model of item response theory. Value Health 2009, 12, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Yano, S.; Ishii, K.; Shibata, A.; Sasai, H.; Nakata, Y.; Fukushima, N.; Inoue, S.; Tanaka, S.; Sugiyama, T.; et al. Comparability of activity monitors used in Asian and Western-country studies for assessing free-living sedentary behaviour. PLoS ONE 2017, 12, e0186523. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Kawakami, R.; Nakae, S.; Nakata, Y.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of Wearable Devices for Estimating Total Energy Expenditure: Comparison With Metabolic Chamber and Doubly Labeled Water Method. JAMA Intern. Med. 2016, 176, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Kawaguchi, K.; Tanaka, S.; Ohkawara, K.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I. Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 2010, 31, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ishikawa-Takata, K.; Tanaka, S.; Bessyo, K.; Tanaka, S.; Kimura, T. Accuracy of Estimating Step Counts and Intensity Using Accelerometers in Older People With or Without Assistive Devices. J. Aging Phys. Act. 2017, 25, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; O’Neill, J.R.; Lobelo, F. The evolving definition of “sedentary“. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Camhi, S.M.; Troiano, R.P. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev. Chronic. Dis. 2012, 9, E113. [Google Scholar] [CrossRef] [PubMed]
- Judice, P.B.; Silva, A.M.; Sardinha, L.B. Sedentary Bout Durations Are Associated with Abdominal Obesity in Older Adults. J. Nutr. Health Aging 2015, 19, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Peddie, M.C.; Bone, J.L.; Rehrer, N.J.; Skeaff, C.M.; Gray, A.R.; Perry, T.L. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: A randomized crossover trial. Am. J. Clin. Nutr. 2013, 98, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Thosar, S.S.; Bielko, S.L.; Mather, K.J.; Johnston, J.D.; Wallace, J.P. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med. Sci. Sports Exerc. 2015, 47, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Marottoli, R.A.; de Leon, C.F.M.; Glass, T.A.; Williams, C.S.; Cooney, L.M., Jr.; Berkman, L.F. Consequences of driving cessation: decreased out-of-home activity levels. J. Gerontol. B Psychol. Sci. Soc. Sci. 2000, 55, S334–S340. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Inoue, S.; Fukushima, N.; Takamiya, T.; Odagiri, Y.; Ohya, Y.; Amagasa, S.; Oka, K.; Owen, N. Social participation among older adults not engaged in full- or part-time work is associated with more physical activity and less sedentary time. Geriatr. Gerontol. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
- Legh-Jones, H.; Moore, S. Network social capital, social participation, and physical inactivity in an urban adult population. Soc. Sci. Med. 2012, 74, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Fishman, E.I.; Steeves, J.A.; Zipunnikov, V.; Koster, A.; Berrigan, D.; Harris, T.A.; Murphy, R. Association between Objectively Measured Physical Activity and Mortality in NHANES. Med. Sci. Sports Exerc. 2016, 48, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Loenneke, J.P.; Ahmed, H.M.; Blaha, M.J. Joint effects of objectively-measured sedentary time and physical activity on all-cause mortality. Prev. Med. 2016, 90, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Glazer, N.L.; Lyass, A.; Esliger, D.W.; Blease, S.J.; Freedson, P.S.; Massaro, J.M.; Murabito, J.M.; Vasan, R.S. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med. Sci. Sports Exerc. 2013, 45, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ekblom-Bak, E.; Ekblom, O.; Bergstrom, G.; Borjesson, M. Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk. Eur. J. Prev. Cardiol. 2016, 23, 967–974. [Google Scholar] [CrossRef] [PubMed]
Variables | Drivers (n = 209) | Non-Drivers (n = 241) | |
---|---|---|---|
n (%) | n (%) | p-Value | |
Sex | <0.001a | ||
Men | 160 (76.6) | 95 (39.4) | |
Women | 49 (23.4) | 146 (60.6) | |
Age | 0.999 a | ||
70–74 years | 109 (52.2) | 125 (51.9) | |
75–79 years | 100 (47.8) | 116 (48.1) | |
Residential area | <0.001a | ||
Urban | 28 (13.4) | 114 (47.3) | |
Suburban | 59 (28.2) | 83 (34.4) | |
Rural | 122 (58.4) | 44 (18.3) | |
Living arrangement | 0.006a | ||
With others | 189 (38.3) | 197 (21.3) | |
Alone | 19 (61.7) | 44 (78.7) | |
(missing n = 1) | |||
Working with income | <0.001a | ||
Working | 80 (90.9) | 51 (81.7) | |
Not working | 129 (9.1) | 188 (18.3) | |
(missing n = 2) | |||
Body mass index (BMI) | 0.140 a | ||
<25.0 kg/m2 | 165 (78.9) | 204 (84.6) | |
≥25.0 kg/m2 | 44 (21.1) | 37 (15.4) | |
Self-rated health | 0.046b | ||
Excellent | 9 (4.3) | 8 (3.3) | |
Very good | 50 (24.0) | 49 (20.5) | |
Good | 121 (58.2) | 126 (52.7) | |
Fair | 26 (12.5) | 42 (17.6) | |
Poor | 2 (1.0) | 11 (4.6) | |
Very poor | 0 (0.0) | 3 (1.3) | |
(missing n = 3) | |||
Self-rated physical limitation | 0.206 b | ||
Not at all | 127 (61.1) | 125 (53.0) | |
Very little | 41 (19.7) | 55 (23.3) | |
Somewhat | 35 (16.8) | 42 (17.8) | |
Quite a lot | 5 (2.4) | 11 (4.7) | |
Could not do physical activities | 0 (0.0) | 3 (1.3) | |
(missing n = 6) | |||
Moderate to vigorous physical activity | 0.594 a | ||
<150 min/week (not meeting guidelines) | 150 (71.8) | 179 (74.3) | |
≥150 min/week (meeting guidelines) | 59 (28.2) | 62 (25.7) |
Variables | Drivers (n = 209) | Non-Drivers (n = 241) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Median | (25%, 75%) | Mean ± SD | Median | (25%, 75%) | |
Wear time | 865.9 ± 86.8 | 875.6 | (806.3, 923.1) | 880.8 ± 93.1 | 876.1 | (819.3, 941.8) |
SB | 501.5 ± 118.1 | 508.1 | (416.4, 580.3) | 539.3 ± 118.1 | 530.4 | (449.6, 608.8) |
LPA | 315.0 ± 96.8 | 303.3 | (244.0, 374.2) | 300.7 ± 106.1 | 302.5 | (222.4, 371.5) |
Total MVPA | 49.4 ± 33.0 | 42.6 | (23.4, 65.7) | 40.7 ± 29.2 | 34.8 | (19.0, 59.0) |
Short-bout MVPA | 33.0 ± 22.1 | 27.6 | (16.8, 43.3) | 25.8 ± 17.9 | 21.9 | (12.7, 33.2) |
Long-bout MVPA | 16.4 ± 20.4 | 9.1 | (2.0, 22.9) | 14.9 ± 18.2 | 7.8 | (1.2, 21.7) |
Independent Variables | Total SB | ≥30 min SB | ≥60 min SB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | |
Stratified by age groupa | ||||||||||||
Younger-older adults (70–74 years) | 0.023 | 0.023 | 0.020 | 0.034 | 0.012 | 0.113 | ||||||
Drivers | 507.4 | (488.4, 526.5) | 216.8 | (198.6, 236.6) | 94.8 | (82.0, 109.6) | ||||||
Non-drivers | 540.8 | (523.2, 558.4) | 250.0 | (230.7, 271.0) | 113.0 | (99.1, 129.1) | ||||||
Older-older adults (75–79 years) | 0.048 | 0.002 | 0.033 | 0.010 | 0.043 | 0.004 | ||||||
Drivers | 493.2 | (472.3, 514.2) | 194.1 | (173.8, 216.8) | 80.5 | (68.4, 95.1) | ||||||
Non-drivers | 544.1 | (524.5, 563.8) | 242.1 | (217.8, 268.5) | 117.2 | (100.0, 137.1) | ||||||
Stratified by sexb | ||||||||||||
Men | 0.049 | 0.001 | 0.052 | <0.001 | 0.049 | 0.001 | ||||||
Drivers | 532.0 | (517.8, 546.3) | 233.9 | (217.8, 250.6) | 98.6 | (87.9, 110.7) | ||||||
Non-drivers | 577.5 | (558.3, 596.7) | 293.8 | (267.9, 322.8) | 141.9 | (121.6, 165.6) | ||||||
Women | 0.022 | 0.050 | 0.007 | 0.272 | 0.004 | 0.392 | ||||||
Drivers | 459.9 | (429.2, 490.7) | 178.2 | (152.4, 208.9) | 79.6 | (63.0, 100.5) | ||||||
Non-drivers | 497.3 | (480.6, 513.9) | 198.6 | (182.4, 215.8) | 90.2 | (79.3, 102.3) | ||||||
Stratified by residential areac | ||||||||||||
Urban | 0.027 | 0.065 | 0.028 | 0.059 | 0.032 | 0.049 | ||||||
Drivers | 528.2 | (491.9, 564.4) | 211.8 | (177.8, 252.3) | 80.5 | (58.6, 110.7) | ||||||
Non-drivers | 567.4 | (550.2, 584.5) | 257.0 | (236.6, 279.9) | 116.1 | (100.0, 134.9) | ||||||
Suburban | 0.033 | 0.037 | 0.025 | 0.073 | 0.014 | 0.180 | ||||||
Drivers | 523.1 | (499.2, 547.0) | 221.8 | (198.2, 248.9) | 97.7 | (82.0, 116.4) | ||||||
Non-drivers | 558.3 | (538.6, 578.0) | 256.4 | (233.3, 281.8) | 115.3 | (99.8, 133.0) | ||||||
Rural | 0.058 | 0.002 | 0.031 | 0.028 | 0.035 | 0.019 | ||||||
Drivers | 460.0 | (442.8, 477.2) | 188.4 | (172.2, 206.1) | 83.6 | (73.5, 95.1) | ||||||
Non-drivers | 516.2 | (486.2, 546.3) | 232.3 | (198.6, 272.3) | 115.6 | (92.3, 145.2) |
Independent Variables | LPA | Total MVPA | Short-bout MVPA | Long-bout MVPA | Total PA (LPA + MVPA) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | EM | (95% CI) | ηp2 | p-Value | |
Stratified by age groupa | ||||||||||||||||||||
Younger-older adults (70–74 years) | 0.023 | 0.023 | 0.003 | 0.397 | 0.006 | 0.271 | 0.000 | 0.976 | 0.023 | 0.023 | ||||||||||
Drivers | 318.1 | (302.2, 334.0) | 36.3 | (30.3, 43.5) | 24.3 | (20.8, 28.3) | 12.3 | (9.4, 16.1) | 367.1 | (348.0, 386.1) | ||||||||||
Non-drivers | 290.3 | (275.7, 305.0) | 32.3 | (27.4, 38.1) | 21.3 | (18.5, 24.5) | 12.2 | (9.4, 16.0) | 333.7 | (316.1, 351.3) | ||||||||||
Older-older adults (75–79 years) | 0.045 | 0.003 | 0.025 | 0.026 | 0.042 | 0.004 | 0.001 | 0.659 | 0.048 | 0.002 | ||||||||||
Drivers | 331.6 | (313.1, 350.1) | 38.3 | (31.9, 45.9) | 26.9 | (22.8, 31.8) | 10.3 | (8.0, 13.3) | 379.4 | (358.4, 400.4) | ||||||||||
Non-drivers | 288.4 | (271.0, 305.8) | 28.0 | (23.6, 33.2) | 18.5 | (15.8, 21.6) | 11.3 | (8.8, 14.4) | 328.5 | (308.8, 348.2) | ||||||||||
Stratified by sexb | ||||||||||||||||||||
Men | 0.057 | <0.001 | 0.009 | 0.140 | 0.015 | 0.055 | 0.003 | 0.443 | 0.049 | 0.001 | ||||||||||
Drivers | 277.9 | (265.5, 290.3) | 34.6 | (30.2, 39.6) | 21.5 | (19.1, 24.2) | 11.6 | (9.5, 14.2) | 322.4 | (308.1, 336.7) | ||||||||||
Non-drivers | 235.1 | (218.4, 251.8) | 28.8 | (24.0, 34.6) | 17.5 | (14.9, 20.5) | 13.4 | (10.1, 17.7) | 276.9 | (257.8, 296.1) | ||||||||||
Women | 0.013 | 0.134 | 0.017 | 0.079 | 0.029 | 0.022 | 0.000 | 0.828 | 0.022 | 0.050 | ||||||||||
Drivers | 382.7 | (356.8, 408.7) | 43.0 | (33.0, 56.0) | 33.6 | (26.5, 42.6) | 11.0 | (7.5, 16.3) | 439.4 | (408.6, 470.1) | ||||||||||
Non-drivers | 358.7 | (344.6, 372.7) | 32.2 | (27.9, 37.2) | 23.9 | (21.0, 27.2) | 10.4 | (8.5, 12.9) | 402.0 | (385.4, 418.7) | ||||||||||
Stratified by residential areac | ||||||||||||||||||||
Urban | 0.036 | 0.033 | 0.001 | 0.777 | 0.000 | 0.939 | 0.008 | 0.385 | 0.027 | 0.065 | ||||||||||
Drivers | 304.9 | (273.6, 336.2) | 31.3 | (21.8, 44.9) | 19.1 | (13.9, 26.4) | 10.7 | (6.9, 16.6) | 347.1 | (310.9, 383.4) | ||||||||||
Non-drivers | 265.7 | (250.9, 280.5) | 29.5 | (24.9, 35.0) | 18.9 | (16.2, 21.9) | 13.4 | (10.8, 16.6) | 307.9 | (290.8, 325.1) | ||||||||||
Suburban | 0.031 | 0.045 | 0.027 | 0.063 | 0.050 | 0.010 | 0.001 | 0.781 | 0.033 | 0.037 | ||||||||||
Drivers | 308.5 | (287.4, 329.6) | 34.9 | (27.9, 43.7) | 22.9 | (18.8, 27.8) | 11.2 | (7.8, 16.1) | 350.1 | (326.2, 374.0) | ||||||||||
Non-drivers | 278.6 | (261.1, 296.0) | 26.0 | (21.6, 31.3) | 16.0 | (13.6, 18.7) | 12.1 | (8.9, 16.3) | 314.9 | (295.2, 334.6) | ||||||||||
Rural | 0.045 | 0.007 | 0.031 | 0.027 | 0.051 | 0.005 | 0.001 | 0.689 | 0.058 | 0.002 | ||||||||||
Drivers | 356.0 | (341.6, 370.5) | 44.4 | (38.5, 51.2) | 33.3 | (29.4, 37.6) | 10.8 | (8.6, 13.6) | 412.6 | (395.3, 429.8) | ||||||||||
Non-drivers | 314.7 | (289.5, 339.8) | 31.7 | (24.7, 40.6) | 22.9 | (18.5, 28.4) | 9.8 | (6.5, 14.8) | 356.3 | (326.3, 386.4) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amagasa, S.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Odagiri, Y.; Oka, K.; Inoue, S. Drivers Are More Physically Active Than Non-Drivers in Older Adults. Int. J. Environ. Res. Public Health 2018, 15, 1094. https://doi.org/10.3390/ijerph15061094
Amagasa S, Fukushima N, Kikuchi H, Takamiya T, Odagiri Y, Oka K, Inoue S. Drivers Are More Physically Active Than Non-Drivers in Older Adults. International Journal of Environmental Research and Public Health. 2018; 15(6):1094. https://doi.org/10.3390/ijerph15061094
Chicago/Turabian StyleAmagasa, Shiho, Noritoshi Fukushima, Hiroyuki Kikuchi, Tomoko Takamiya, Yuko Odagiri, Koichiro Oka, and Shigeru Inoue. 2018. "Drivers Are More Physically Active Than Non-Drivers in Older Adults" International Journal of Environmental Research and Public Health 15, no. 6: 1094. https://doi.org/10.3390/ijerph15061094
APA StyleAmagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Odagiri, Y., Oka, K., & Inoue, S. (2018). Drivers Are More Physically Active Than Non-Drivers in Older Adults. International Journal of Environmental Research and Public Health, 15(6), 1094. https://doi.org/10.3390/ijerph15061094