Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects Recruiting and Questionnaire
2.2. Oxidative Status Evaluation
2.3. Statistical Methods
2.4. Compliance with Ethical Standards
3. Results and Discussion
3.1. Oxidative Status at Baseline (Trc)
3.2. Oxidative Status and Diet at Baseline (Trc)
3.3. Oxidative Status and Physical Activity in the Trained Group (at T0 and T1)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res. 2004, 567, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Morales-González, J.A. (Ed.) Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Lambrinoudaki, I.; Ceasu, I.; Depypere, H.; Erel, T.; Rees, M.; Schenck-Gustafsson, K.; Simoncini, T.; Tremollieres, F.; van der Schouw, Y.T.; Pérez-López, F.R. EMAS position statement: Diet and health in midlife and beyond. Maturitas 2013, 74, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Karolkiewicz, J.; Szczêsniak, L.; Deskur-Smielecka, E.; Nowak, A.; Stemplewski, R.; Szeklicki, R. Oxidative stress and antioxidant defense system in healthy, elderly men: Relationship to physical activity. Aging Male 2003, 6, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Molina, L.; Fito, M.; Arquer, A.; Sanchez-Quesada, J.L.; Covas, M.I.; Ordoñez-Llanos, J.; Marrugat, J. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 2003, 167, 327–334. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [PubMed]
- Fisher-Wellman, K.H.; Neufer, P.D. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 2012, 23, 142–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittaluga, M.; Parisi, P.; Sabatini, S.; Ceci, R.; Caporossi, D.; Valeria Catani, M.; Savini, I.; Avigliano, L. Cellular and biochemical parameters of exercise-induced oxidative stress: Relationship with training levels. Free Radic. Res. 2006, 40, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Boccatonda, A.; Tripaldi, R.; Davì, G.; Santilli, F. Oxidative Stress Modulation through Habitual Physical Activity. Curr. Pharm. Des. 2016, 22, 3648–3680. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Lima, G.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef] [PubMed]
- INRAN—Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. Available online: http://prevenzione.ulss20.verona.it/docs/Sian/IgieneNutrizione/Documenti/tabelle-porzioni.pdf (accessed on 10 November 2017).
- Iorio, E.L. Oxidative stress and sport and nutrition. Eur. J. Health 2007, 1, 102–103. [Google Scholar]
- ISS—Istituto Superiore di Sanità. Available online: http://www.iss.it/binary/acid4/cont/Questionario.pdf (accessed on 10 January 2017).
- Atsumi, T.; Iwakura, I.; Kashiwagi, Y.; Fujisawa, S.; Ueha, T. Free radical scavenging activity in the nonenzymatic fraction of human saliva: A simple DPPH assay showing the effect of physical exercise. Antioxid. Redox Signal. 1999, 1, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Broedbaek, K.; Henriksen, T.; Stovgaard, E.S.; Poulsen, H.E. Assays for urinary biomarkers of oxidatively damaged nucleic acids. Free Radic. Res. 2012, 46, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Ritz, P.; Vol, S.; Berrut, G.; Tack, I.; Arnaud, M.J.; Tichet, J. Influence of gender and body composition on hydration and body water spaces. Clin. Nutr. 2008, 27, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kawanishi, Y.; Kamohara, S.; Uchida, Y.; Shiota, M.; Inatomi, Y.; Komori, T.; Miyazawa, K.; Gondo, K.; Yamasawa, I. Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: A study on 2507 healthy people. Free Radic. Biol. Med. 2003, 35, 826–832. [Google Scholar] [CrossRef]
- Vassalle, C.; Sciarrino, R.; Bianchi, S.; Battaglia, D.; Mercuri, A.; Maffei, S. Sex-related differences in association of oxidative stress status with coronary artery disease. Fertil. Steril. 2012, 97, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Autrup, H.; Hertel, O.; Wallin, H.; Knudsen, L.E.; Loft, S. Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol. Biomark. Prev. 2003, 12, 191–196. [Google Scholar]
- Ruchirawat, M.; Navasumrit, P.; Settachan, D. Exposure to benzene in various susceptible populations: Co-exposures to 1,3-butadiene and PAHs and implications for carcinogenic risk. Chem. Biol. Interact. 2010, 184, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, W.; Kuang, D.; Deng, Q.; Zhang, W.; Wang, S.; He, M.; Zhang, X.; Wu, T.; Guo, H. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers. Environ. Res. 2015, 140, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Gianotti, V.; Bonetta, S.; Gosetti, F.; Oddone, M.; Gennaro, M.C.; Carraro, E. DNA damage in A549 cells exposed to different extracts of PM(2.5) from industrial, urban and highway sites. Chemosphere 2009, 77, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Mazzoli-Rocha, F.; Fernandes, S.; Einicker-Lamas, M.; Zin, W.A. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol. Toxicol. 2010, 26, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Vattanasit, U.; Navasumrit, P.; Khadka, M.B.; Kanitwithayanun, J.; Promvijit, J.; Autrup, H.; Ruchirawat, M. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int. J. Hyg. Environ. Health 2014, 217, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Schilirò, T.; Alessandria, L.; Bonetta, S.; Carraro, E.; Gilli, G. Inflammation response and cytotoxic effects in human THP-1 cells of size-fractionated PM10 extracts in a polluted urban site. Chemosphere 2016, 145, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Gletsu-Miller, N.; Hansen, J.M.; Jones, D.P.; Go, Y.-M.; Torres, W.E.; Ziegler, T.R.; Lin, E. Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery. Obes. Silver 2009, 17, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, C.; Sánchez, C.; Climent, B.; Vázquez, A.; Iradi, A.; El Amrani, F.; Bediaga, A.; Sáez, G.T. Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv. Exp. Med. Biol. 2014, 824, 5–17. [Google Scholar] [PubMed]
- Çelik, G.; Yöntem, M.; Cilo, M.; Bilge, M.; Mehmetoğlu, İ.; Ünaldi, M. The relationship between glutathione peroxidase and bioimpedance parameters in nondiabetic hemodialysis patients. Hemodial. Int. 2012, 16, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Tomey, K.M.; Sowers, M.R.; Li, X.; McConnell, D.S.; Crawford, S.; Gold, E.B.; Lasley, B.; Randolph, J.F. Dietary fat subgroups, zinc, and vegetable components are related to urine F2a-isoprostane concentration, a measure of oxidative stress, in midlife women. J. Nutr. 2007, 137, 2412–2419. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Yoe, H.Y.; Kim, H.J.; Park, J.Y.; Kim, J.Y.; Lee, S.-H.; Lee, J.H.; Lee, K.P.; Jang, Y.; Lee, J.H. Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 2010, 208, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Tudek, B.; Swoboda, M.; Kowalczyk, P.; Oliński, R. Modulation of oxidative DNA damage repair by the diet, inflammation and neoplastic transformation. J. Physiol. Pharmacol. 2006, 7, 33–49. [Google Scholar]
- Alleva, R.; Di Donato, F.; Strafella, E.; Staffolani, S.; Nocchi, L.; Borghi, B.; Pignotti, E.; Santarelli, L.; Tomasetti, M. Effect of ascorbic acid-rich diet on in vivo-induced oxidative stress. Br. J. Nutr. 2012, 107, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, S.; Sacerdote, C.; Fiorini, L.; Marsala, R.; Polidoro, S.; Gamberini, S.; Saletta, F.; Malaveille, C.; Talaska, G.; Vineis, P.; et al. Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet. Br. J. Nutr. 2007, 98, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress : Relationship with exercise and training. Sports Med. 2009, 36, 327–358. [Google Scholar] [CrossRef]
- Fisher-Wellman, K.; Bloomer, R.J. Acute exercise and oxidative stress: A 30 years history. Dyn. Med. 2009, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Taylor, A.W.; Ohno, H.; Goto, S. Adaptation to exercise-induced oxidative stress: From muscle to brain. Exerc. Immunol. Rev. 2001, 7, 90–107. [Google Scholar] [PubMed]
- Bloomer, R.J.; Goldfarb, A.H. Anaerobic exercise and oxidative stress: A review. Can. J. Appl. Physiol. 2004, 29, 245–263. [Google Scholar] [CrossRef] [PubMed]
- Viña, J.; Sastre, J.; Pallardó, F.V.; Gambini, J.; Borrás, C. Role of mitochondrial oxidative stress to explain the different longevity between genders: Protective effect of estrogens. Free Radic. Res. 2006, 40, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
N | Mean ± SD | ||||
---|---|---|---|---|---|
BMI | PA (Degrees) | TBW (%) | FM (%) | ||
Gender | |||||
♂ | 32 | 24.2 ± 3.7 | 7.1 ± 0.7 | 26.1 ± 3.1 | 7.2 ± 3.9 |
♀ | 19 | 20.7 ± 2.8 | 6.2 ± 0.7 | 20.2 ± 1.7 | 6.5 ± 3.4 |
p | <0.001 | ≤0.0001 | ≤0.0001 | ns | |
Age | |||||
≤39 | 16 | 22.5 ± 4.7 | 7.0 ± 0.7 | 23.6 ± 4.0 | 6.4 ± 4.4 |
40–44 | 19 | 23.0 ± 3.7 | 6.6 ± 0.8 | 24.4 ± 4.0 | 7.5 ± 3.5 |
≥45 | 16 | 23.0 ± 3.0 | 6.8 ± 0.9 | 23.8 ± 3.8 | 6.9 ± 3.4 |
p | ns | ns | ns | ns | |
Smoking habits | |||||
No | 41 | 22.9 ± 3.9 | 6.7 ± 0.8 | 23.9 ± 4.03 | 7.1 ± 3.8 |
Yes | 10 | 22.8 ± 3.4 | 6.9 ± 0.6 | 24.0 ± 3.5 | 6.3 ± 3.7 |
p | ns | ns | ns | ns | |
Physical activity | |||||
Untrained | 16 | 22.9 ± 3.7 | 6.8 ± 0.7 | 24.1 ± 3.6 | 6.7 ± 3.9 |
Trained | 35 | 22.8 ± 3.9 | 6.7 ± 0.8 | 23.8 ± 4.1 | 7.0 ± 3.7 |
p | ns | ns | ns | ns |
d-ROMs (mg H2O2/dL) | BAP (µM) | DPPH (mM) | 8OHdGuo (ng/mL) | |||||
Gender | N | N | N | N | ||||
♂ | 32 | 16.67 ± 3.99 | 32 | 2346.56 ± 631.05 | 31 | 0.07 ± 0.01 | 32 | 82.25 ± 139.08 |
♀ | 19 | 19.94 ± 3.88 | 19 | 2374.37 ± 167.53 | 19 | 0.07 ± 0.01 | 19 | 46.50 ± 54.93 |
p | <0.01 | ns | ns | ns | ||||
Physical activity level | N | N | N | N | ||||
Untrained | 16 | 17.89 ± 4.11 | 16 | 2313.81 ± 163.65 | 15 | 0.07 ± 0.01 | 16 | 39.01 ± 55.31 |
Trained | 35 | 17.89 ± 4.33 | 35 | 2376.63 ± 604.26 | 35 | 0.07 ± 0.01 | 35 | 82.61 ± 133.11 |
p | ns | ns | ns | ns | ||||
Traffic level | N | N | N | N | ||||
Low | 25 | 17.15 ± 3.43 | 25 | 2413.44 ± 671.79 | 24 | 0.07 ± 0.01 | 25 | 36.36 ± 40.55 |
Heavy | 26 | 18.60 ± 4.83 | 26 | 2302.58 ± 273.62 | 26 | 0.07 ± 0.01 | 26 | 100.26 ± 152.01 |
p | ns | ns | <0.05 | <0.05 | ||||
Smoking habits | N | N | N | N | ||||
No | 41 | 17.59 ± 4.26 | 41 | 2390.49 ± 536.23 | 40 | 0.073 ± 0.01 | 41 | 76.18 ± 126.36 |
Yes | 10 | 19.14 ± 4.04 | 10 | 2219.30 ± 353.11 | 10 | 0.07 ± 0.01 | 10 | 39.23 ± 46.68 |
p | ns | ns | ns | ns |
Spearman’s Coefficient; p Value | ||||
---|---|---|---|---|
d-ROMs (mg H2O2/dL) | BAP (µM/L) | DPPH (mM) | 8OhdGuo (ng/mL) | |
Age | ||||
♂ (N = 32) | ns | ns | ns | ns |
♀ (N = 19) | ns | ns | ns | ns |
All (N = 51) | 0.278; p < 0.05 | ns | ns | ns |
BMI | ||||
♂ (N = 32) | ns | ns | ns | ns |
♀ (N = 19) | ns | ns | −0.631; p < 0.005 | ns |
All (N = 51) | ns | ns | −0.509; p <0.0001 | ns |
PA | ||||
♂ (N = 32) | −0.529; p < 0.001 | ns | ns | ns |
♀ (N = 19) | ns | ns | ns | ns |
All (N = 51) | −0.557; p < 0.0001 | ns | ns | ns |
TBW | ||||
♂ (N = 32) | ns | ns | ns | ns |
♀ (N = 19) | ns | ns | ns | ns |
All (N = 51) | −0.315; p < 0.05 | ns | −0.323; p < 0.05 | ns |
FM | ||||
♂ (N = 32) | Ns | ns | ns | ns |
♀ (N = 19) | Ns | ns | ns | ns |
All (N = 51) | 0.306; p < 0.05 | ns | ns | 0.308; p < 0.05 |
% | |||
---|---|---|---|
Never–1 time/week | 2–4 times/week | 5–7 times/week | |
Alcoholic beverages | |||
red wine | 27.5 | 0.0 | 72.5 |
other alcoholic beverages | 27.5 | 0.0 | 72.5 |
Cooking methods | |||
boiled | 58.8 | 25.5 | 15.7 |
steam | 41.2 | 35.3 | 23.5 |
fried | 17.6 | 80.4 | 2.0 |
grilled | 54.9 | 23.5 | 21.6 |
Antioxidant foods | |||
blueberries | 54.9 | 45.1 | 0.0 |
cabbage | 15.7 | 74.5 | 9.8 |
spinach | 19.6 | 66.7 | 13.7 |
beet | 62.7 | 33.3 | 3.9 |
blackberries | 45.1 | 54.9 | 0.0 |
plum | 33.3 | 62.7 | 3.9 |
cabbage | 35.3 | 54.9 | 9.8 |
grapefruit | 45.1 | 45.1 | 9.8 |
strawberries | 5.9 | 76.5 | 17.6 |
orange | 9.8 | 58.8 | 31.4 |
pepper | 9.8 | 78.4 | 11.8 |
kiwi | 25.5 | 52.9 | 21.6 |
beans | 9.8 | 64.7 | 25.5 |
cauliflower | 7.8 | 74.5 | 17.6 |
Other foods | |||
red meat | 7.8 | 86.3 | 5.9 |
sausages | 3.9 | 96.1 | 0.0 |
fish | 5.9 | 94.1 | 0.0 |
eggs | 3.9 | 96.1 | 0.0 |
fruits | 0.0 | 17.6 | 82.4 |
vegetables | 3.9 | 25.5 | 70.6 |
legumes | 0.0 | 96.1 | 3.9 |
milk dairy | 11.8 | 0.0 | 88.2 |
sugary beverages | 33.3 | 64.7 | 2.0 |
dessert | 5.9 | 66.7 | 27.5 |
junk food | 47.1 | 52.9 | 0.0 |
coffee, tea | 5.9 | 3.9 | 90.2 |
dark chocolate | 25.5 | 66.7 | 7.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carraro, E.; Schilirò, T.; Biorci, F.; Romanazzi, V.; Degan, R.; Buonocore, D.; Verri, M.; Dossena, M.; Bonetta, S.; Gilli, G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int. J. Environ. Res. Public Health 2018, 15, 1152. https://doi.org/10.3390/ijerph15061152
Carraro E, Schilirò T, Biorci F, Romanazzi V, Degan R, Buonocore D, Verri M, Dossena M, Bonetta S, Gilli G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. International Journal of Environmental Research and Public Health. 2018; 15(6):1152. https://doi.org/10.3390/ijerph15061152
Chicago/Turabian StyleCarraro, Elisabetta, Tiziana Schilirò, Felicina Biorci, Valeria Romanazzi, Raffaella Degan, Daniela Buonocore, Manuela Verri, Maurizia Dossena, Sara Bonetta, and Giorgio Gilli. 2018. "Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects" International Journal of Environmental Research and Public Health 15, no. 6: 1152. https://doi.org/10.3390/ijerph15061152
APA StyleCarraro, E., Schilirò, T., Biorci, F., Romanazzi, V., Degan, R., Buonocore, D., Verri, M., Dossena, M., Bonetta, S., & Gilli, G. (2018). Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. International Journal of Environmental Research and Public Health, 15(6), 1152. https://doi.org/10.3390/ijerph15061152