Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing
Abstract
:1. Introduction
2. Methodology
2.1. Questionnaire Survey
2.2. Field Measurement
2.3. Data Analysis
3. Results and Discussion
3.1. Questionnaire Survey
3.1.1. Perceived Air Quality
3.1.2. Indoor Sources/Sinks
3.1.3. Ventilation Patterns
3.2. Field Measurement
3.2.1. Concentrations in Time Sequence
3.2.2. Hour Average of PM2.5 and Ozone Concentrations in Different Window Opening Statuses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goss, C.H.; Newsom, S.A.; Schildcrout, J.S.; Sheppard, L.; Kaufman, J.D. Effect of Ambient Air Pollution on Pulmonary Exacerbations and Lung Function in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2004, 169, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Chuang, C.C.; Zuo, L. Fine particulate matter in acute exacerbation of COPD. Front. Physiol. 2015, 6, 294. [Google Scholar] [CrossRef] [PubMed]
- Ogino, K.; Zhang, R.; Takahashi, H.; Takemoto, K.; Kubo, M.; Murakami, I.; Wang, D.H.; Fujikura, Y. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS ONE 2014, 9, 92710. [Google Scholar] [CrossRef] [PubMed]
- Psoter, K.J.; De Roos, A.J.; Mayer, J.D.; Kaufman, J.D.; Wakefield, J.; Rosenfeld, M. Fine particulate matter exposure and initial Pseudomonas aeruginosa acquisition in cystic fibrosis. Ann. Am. Thorac. Soc. 2015, 12, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Ozone and short-term mortality in 95 US urban communities. 1987–2000. JAMA 2004, 292, 2372–2378. [Google Scholar] [CrossRef] [PubMed]
- Farhat, S.C.; Almeida, M.B.; Silva-Filho, L.V.; Farhat, J.; Rodrigues, J.C.; Braga, A.L. Ozone is associated with an increased risk of respiratory exacerbations in patients with cystic fibrosis. Chest 2013, 144, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.E.; Ke, Z.; Loftus, C.T.; Lynch, H.N.; Prueitt, R.L.; Mohar, I.; Shubin, S.P.; Sax, S.N. Short-term ozone exposure and asthma severity: Weight-of-evidence analysis. Environ. Res. 2018, 160, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.L.; Triche, E.W.; Belanger, K.; Bracken, M.B. The epidemiology of asthma during pregnancy: Prevalence, diagnosis, and symptoms. Immunol. Allerg. Clin. 2006, 26, 29–62. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.S.; Foreman, C.T.; Clough, J.B. Measuring lung function in infancy. Respir. Med. 2000, 94, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Wiwatanadate, P. Acute air pollution-related symptoms among residents in Chiang Mai, Thailand. J. Environ. Health 2014, 76, 76–84. [Google Scholar] [PubMed]
- Bekki, K.; Ito, T.; Yoshida, Y.; He, C.; Arashidani, K.; He, M.; Sun, G.; Zeng, Y.; Sone, H.; Kunugita, N.; et al. Pm2.5 collected in china causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ. Toxic. Pharmacol. 2016, 45, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Ormstad, H. Suspended particulate matter in indoor air: Adjuvants and allergen carriers. Toxicology 2000, 152, 53–68. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Jiang, R.; Song, W. Rat lung response to ozone and fine particulate matter (pm2.5) exposures. Environ. Toxicol. 2015, 30, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Pereira, G.; Liu, Q.; Rachel, W.C.; Huxley, R. The burden of lung cancer mortality attributable to fine particles in China. Sci. Total Environ. 2017, 579, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, Y.; Gao, H.; Ma, J.; Mao, X.; Wang, Y.; Ma, X. Forecasting PM2.5 induced male lung cancer morbidity in china using satellite retrieved PM2.5 and spatial analysis. Sci. Total Environ. 2017, 607–608, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5, exposure in china with assimilated PM2.5, concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.P.; Ren, P.P.; Zhang, L.; Mao, H.J. Health burden attributable to ambient PM2.5, in China ⭐. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in china: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, Y.; Ma, Z.; Jin, Z.; Liu, X.; Wang, H.; Liu, Y.; Wang, H.; Jantunen, M.; Bi, J.; Kinney, P.L. Spatial and temporal trends in the mortality burden of air pollution in china: 2004–2012. Environ. Int. 2016, 98, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-term PM2.5 exposures and respiratory, cancer and cardiovascular mortality in American older adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Chalbot, M.C.; Jones, T.A.; Kavouras, I.G. Trends of non-accidental, cardiovascular, stroke and lung cancer mortality in Arkansas are associated with ambient PM2.5 reductions. Int. J. Environ. Res. Public Health 2014, 11, 7442–7445. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; et al. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2005, 16, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Hystad, P.; Demers, P.A.; Johnson, K.C.; Carpiano, R.M.; Brauer, M. Long-term residential exposure to air pollution and lung cancer risk. Epidemiology 2013, 24, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Yoon, H.J.; Xu, S.; Tourassi, G. Predicting Lung Cancer Incidence from Air Pollution Exposures Using Shapelet-Based Time Series Analysis. In Proceedings of the 3rd IEEE EMBS International Conference on Biomedical and Health Informatics, Shenzhen, China, 24–27 February 2016; pp. 565–568. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- DeCastro, B.R.; Sax, S.N.; Chillrud, S.N.; Kinney, P.L.; Spengler, J.D. Modeling time-location patterns of inner-city high school students in New York and Los Angeles using a longitudinal approach with generalized estimating equations. Expo. Sci. Environ. Epidemiol. 2007, 17, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilaqua, V.; Juhani Jantunen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Paasonen, P.; Kulmala, M. Activity pattern of a selected group of school occupants and their family members in Helsinki-Finland. Sci. Total Environ. 2012, 425, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, J.S. Modeling ozone penetration through the wall assembly using computational fluid dynamics. HVAC R Res. 2012, 18, 160–168. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Fadeyi, M.O. Ozone in indoor environments: Research progress in the past 15 years. Sustain. Cities Soc. 2015, 18, 78–94. [Google Scholar] [CrossRef]
- Li, H.; Cai, J.; Chen, R.; Zhao, Z.; Ying, Z.; Wang, L.; Chen, J.; Hao, K.; Kinney, P.L.; Chen, H.; et al. Particulate matter exposure and stress hormone levels: A randomized, double-blind, crossover trial of air purification. Circulation 2017, 136, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J. Ozone in indoor environments: Concentration and chemistry. Indoor Air 2000, 10, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, C.; Wang, P.; Chen, Z.; Cao, S.; Wang, Q.; Chen, Z.; Cao, S.; Wang, Q.; Xie, G.; et al. Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing. Build. Environ. 2015, 87, 283–291. [Google Scholar] [CrossRef]
- Shao, Z.; Bi, J.; Ma, Z.; Wang, J. Seasonal trends of indoor fine particulate matter and its determinants in urban residences in nanjing, china. Build. Environ. 2017, 125, 319–325. [Google Scholar] [CrossRef]
- Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm (accessed on 24 June 2018).
- Li, H.L.; Song, W.W.; Zhang, Z.F.; Ma, W.L.; Gao, C.J.; Li, J.; Huo, C.Y.; Mohammed, M.O.A.; Liu, L.Y.; Kannan, K.; et al. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment. Sci. Total Environ. 2016, 565, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Qi, M. Field testing of natural ventilation in college student dormitories (Beijing, China). Build. Environ. 2014, 78, 36–43. [Google Scholar] [CrossRef]
- Pei, J.; Yin, Y.; Liu, J. Long-term indoor gas pollutant monitor of new dormitories with natural ventilation. Energy Build. 2016, 129, 514–523. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhu, T.; Han, Y.; Lv, D. PM2.5-bound pahs in three indoor and one outdoor air in beijing: Concentration, source and health risk assessment. Sci. Total Environ. 2017, 586, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.; Wen, N.; Wang, C. Determination and risk assessment of airborne endotoxin concentrations in a university campus. J. Aerosol Sci. 2017, 115, 146–157. [Google Scholar] [CrossRef]
- Wheida, A.; Nasser, A.; El, N.M.; Borbon, A.; Ga, A.E.A.; Abdel, W.M.; Alfaro, S.C. Tackling the mortality from long-term exposure to outdoor air pollution in megacities: Lessons from the greater cairo case study. Environ. Res. 2018, 160, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Pascal, M.; Wagner, V.; Chatignoux, E.; Falq, G.; Corso, M.; Blanchard, M.; Sabine, H.; Sophie, L.; Laurence, P.; Christophe, D. Ozone and short-term mortality in nine french cities: Influence of temperature and season. Atmos. Environ. 2012, 62, 566–572. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Arhami, M.; Nabizadeh, R.; Sowlat, M.H.; Zahra, P.; Noushin, R.; Fatemeh, M.; Homa, K.; et al. Indoor/outdoor relationships of PM 10, PM 2.5, and PM 1, mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014, 82, 375–382. [Google Scholar] [CrossRef]
- Khamal, R.; Isa, Z.M.; Sutan, R.; Noraini, N.M.R.; Ghazi, H.F. Indoor particulate matters, microbial count assessments and wheezing symptoms among toddlers in urban day care centers (DCCS) in the district of seremban, malaysia. Ann. Glob. Health 2016. [Google Scholar] [CrossRef]
- Li, Y.C.; Shu, M.; Ho, S.S.H.; Wang, C.; Cao, J.J.; Wang, G.H.; Wang, X.X.; Wang, K.; Zhao, X.Q. Characteristics of PM 2.5, emitted from different cooking activities in china. Atmos. Res. 2015, 166, 83–91. [Google Scholar] [CrossRef]
- Poon, C.; Wallace, L.; Lai, A.C.K. Experimental study of exposure to cooking emitted particles under single zone and two-zone environments. Build. Environ. 2016, 104, 122–130. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Risk assessment of exposure to indoor aerosols associated with chinese cooking. Environ. Res. 2006, 102, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.; Fuoco, F.C.; Marini, S.; Buonanno, G. Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmos. Environ. 2015, 103, 238–246. [Google Scholar] [CrossRef]
- Wan, M.P.; Wu, C.L.; To, G.N.S.; Chan, T.C.; Chao, C.Y.H. Ultrafine particles, and pm 2.5, generated from cooking in homes. Atmos. Environ. 2011, 45, 6141–6148. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Yuan, J.; Zuo, J.; Chen, G.; Xu, L.; Rameezdeene, R. Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in tianjin, china. Renew. Sustain. Energy Rev. 2016, 64, 372–381. [Google Scholar] [CrossRef]
- Destaillats, H.; Maddalena, R.L.; Singer, B.C.; Hodgson, A.T.; McKone, T.E. Indoor pollutants emitted by office device: A review of reported data and information needs. Atmos. Environ. 2008, 42, 1371–1388. [Google Scholar] [CrossRef]
- Siegel, J. Primary and Secondary Consequences of Indoor Air Cleaners. Indoor Air 2016, 26, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Bowser, D.; Fugler, D. Indoor ozone and electronic air cleaners. Indoor Air 2002, 5, 670–675. [Google Scholar]
- Britigan, N.; Alshawa, A.; Nizkorodov, S. Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers. Air Repair. 2006, 56, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.K. Assessment of Pollutant Emissions from Dry-Process Photocopiers. Indoor Air 1999, 9, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.; Jakober, C. Evaluation of Ozone Emissions from Portable Indoor “Air Cleaners” that Intentionally Generate Ozone; Staff Technical Report; California Air Resources Board: Sacramento, CA, USA, 2006.
- Destaillats, H.; Sleiman, M.; Fisk, W.J. Evaluation of Pollutant Emissions from Portable Air Cleaners; Final Report to California Air Resources Board: Contract No. 10-320; California Air Resources Board: Sacramento, CA, USA, 2014.
- Jakober, C.; Phillips, T. Evaluation of Ozone Emissions from Portable Indoor Air Cleaners: Electrostatic Precipitators and Ionizers; California Environmental Protection Agency; Air Resources Board: Sacramento, CA, USA, 2008.
- Lee, S.C.; Lam, S.; Fai, H.K. Characterization of VOCs, ozone, and PM 10, emissions from office device in an environmental chamber. Build. Environ. 2001, 36, 837–842. [Google Scholar] [CrossRef]
- Leovic, K.; Sheldon, L.; Whitaker, D.; Hetes, R.; Calcagni, J.; Baskir, J. Measurement of indoor air emissions from dry-process photocopy machines. Air Repair. 1996, 46, 821–829. [Google Scholar] [CrossRef]
- Leovic, K.; Whitaker, D.; Northeim, C.; Sheldon, L. Evaluation of a test method for measuring indoor air emissions from dry-process photocopiers. Air Repair. 1998, 48, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.; Al, E. Characterization of Ozone Emissions from Air Cleaners Equipped with Ozone Generators and Sensor and Feedback Control Circuitry. In Proceedings of the Engineering Solutions to Indoor Air Quality Programs Symposium, Raleigh, NC, USA, 14–17 October 2000. [Google Scholar]
- Morrison, G.C. In-Duct Air Cleaning Devices: Ozone Emission Rates and Test Methodology; California Air Resources Board, Research Division: Sacramento, CA, USA, 2014.
- Niu, J.; Tung, T.C.W.; Burnett, J. Ozone emission rate testing and ranking method using environmental chamber. Atmos. Environ. 2001, 35, 2143–2151. [Google Scholar] [CrossRef]
- Niu, J.; Tung, T.C.W.; Burnett, J. Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing. J. Electrostat. 2001, 51–52, 20–24. [Google Scholar] [CrossRef]
- Tung, T.C.W.; Niu, J.L.; Burnett, J.; Hung, K. Determination of ozone emission from a domestic air cleaner and decay parameters using environmental chamber tests. Indoor Built. Environ. 2005, 14, 29–37. [Google Scholar] [CrossRef]
- Phillips, T.J.; Bloudoff, D.P.; Jenkins, P.L.; Stroud, K.R. Ozone emissions from a “personal air purifier”. J. Expo. Sci. Environ. Epidemiol. 1999, 9, 594–601. [Google Scholar] [CrossRef]
- Poppendieck, D.G.; Rim, D.; Persily, A.K. Ultrafine Particle Removal and Ozone Generation by In-Duct Electrostatic Precipitators. Environ. Sci. Technol. 2014, 48, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhu, S.; Lee, E.S.; Zhao, B.; Zhu, Y. Performance of wearable ionization air cleaners: Ozone emission and particle removal. Aerosol Sci. Technol. 2016, 50, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Tharr, D. Case Studies: Testing of Ozone-Generating Air-Purifying Devices. Appl. Occup. Environ. Hyg. 1998, 13, 141–143. [Google Scholar] [CrossRef]
- Tuomi, T.; Engström, B.; Niemelä, R.; Svinhufvud, J.; Reijula, K. Emission of ozone and organic volatiles from a selection of laser printers and photocopiers. Appl. Occup. Environ. Hyg. 2000, 15, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Viner, A.S.; Lawless, P.A.; Ensor, D.S.; Sparks, L.E. Ozone generation in dc-energized electrostatic precipitators. IEEE Trans. Ind. Appl. 1992, 28, 504–512. [Google Scholar] [CrossRef]
- Waring, M.S.; Siegel, J.A.; Corsi, R.L. Ultrafine particle removal and generation by portable air cleaners. Atmos. Environ. 2008, 42, 5003–5014. [Google Scholar] [CrossRef]
- Xiang, J.; Weschler, C.J.; Mo, J.; Day, D.; Zhang, J.J.; Zhang, Y. Ozone, electrostatic precipitators, and particle number concentrations: Correlations observed in a real office during working hours. Environ. Sci. Technol. 2016, 50, 10236–10244. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.P.; Lee, W.M.; Hsieh, C.P.; Lin, C.C. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests. Atmos. Environ. 2011, 45, 35–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Jenkins, P.L. Evaluation of ozone emissions and exposures from consumer products and home appliances. Indoor Air 2016, 27, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Gao, Z. Ozone removal on building material surface: A literature review. Build. Environ. 2018, 134, 205–217. [Google Scholar] [CrossRef]
- Koponen, I.K.; Asmi, A.; Keronen, P.; Puhto, K.; Kulmala, M. Indoor air measurement campaign in Helsinki, Finland 1999—The effect of outdoor air pollution on indoor air. Atmos. Environ. 2001, 35, 1465–1477. [Google Scholar] [CrossRef]
- Hayes, S.R. Use of an indoor air quality model (IAQM) to estimate indoor ozone levels. J. Air Waste Manag. 1991, 41, 161–170. [Google Scholar] [CrossRef]
- Thompson, C.R.; Hensel, E.G.; Kats, G. Outdoor-indoor levels of six air pollutants. J. Air Pollut. Control Assoc. 1973, 23, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Keng, W.T.; Knutson, E. Indoor outdoor aerosol measurements for two residential buildings in New Jersey. Aerosol Sci. Technol. 1988, 9, 71–82. [Google Scholar] [CrossRef]
- Chinese Research Academy of Environmental Sciences. Standard on Ambient Air Quality. China Environmental Science Press, 2012. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf (accessed on 24 June 2018).
- National Health and Health Committee of the People’s Republic of China. Hygienic Standard for Ozone in Indoor Air. The State Bureau of Quality and Technical Supervision; 2000. Available online: http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2014/11/20141103141201558.pdf (accessed on 24 June 2018).
- Zhang, W.; Wang, L.; Ji, Z.; Ma, L.; Hui, Y. Test on ventilation rates of dormitories and offices in university by the CO2, tracer gas method. Procedia Eng. 2015, 121, 662–666. [Google Scholar] [CrossRef]
No. | Question | Options |
---|---|---|
1 | How do you feel about the general air quality inside your dormitory? | a. Very good; b. Good; c. Neutral; d. Poor; e. Very poor; |
2 | How do you feel about the general air quality outside your dormitory? | a. Very good; b. Good; c. Neutral; d. Poor; e. Very poor; |
3 | Does any of your roommates commonly smoke in your dormitory? | a. Yes; b. No; c. Uncertain; |
4 | Do you have an air cleaner 1 in your dormitory? | a. Yes; b. No; c. Uncertain; |
5 | Which kind of ventilation do you usually use in your dormitory? | a. Natural; b. Mechanical 2; c. Uncertain; |
6 | How frequent do you usually open the window in your dormitory? | a. Almost all day; b. Sometimes; c. Almost never; |
7 | When do you usually open the window in your dormitory? | a. 5:00–9:00; b. 9:00–11:00; c. 11:00–14:00; d. 14:00–16:00; e. 16:00–22:00; f. 22:00–5:00; g. Uncertain; |
Pollutant | PM2.5 | Ozone | ||||
---|---|---|---|---|---|---|
Situation | Window Open | Window Closed | Overall | Window Open | Window Closed | Overall |
Mean (SD) | 0.65 (0.08) | 0.49 (0.05) | 0.60 (0.10) | 0.50 (0.15) | 0.26 (0.05) | 0.43 (0.17) |
Mid-value | 0.66 | 0.49 | 0.62 | 0.47 | 0.25 | 0.42 |
Range | 0.45–0.79 | 0.42–0.69 | 0.42–0.79 | 0.23–1.00 | 0.21–0.39 | 0.21–1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Shen, J.; Gao, Z. Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing. Int. J. Environ. Res. Public Health 2018, 15, 1328. https://doi.org/10.3390/ijerph15071328
Yang Z, Shen J, Gao Z. Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing. International Journal of Environmental Research and Public Health. 2018; 15(7):1328. https://doi.org/10.3390/ijerph15071328
Chicago/Turabian StyleYang, Zhe, Jialei Shen, and Zhi Gao. 2018. "Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing" International Journal of Environmental Research and Public Health 15, no. 7: 1328. https://doi.org/10.3390/ijerph15071328
APA StyleYang, Z., Shen, J., & Gao, Z. (2018). Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing. International Journal of Environmental Research and Public Health, 15(7), 1328. https://doi.org/10.3390/ijerph15071328