Awareness, Risk Perception, and Protective Behaviors for Extreme Heat and Climate Change in New York City
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Racial and Economic Disparities in AC Access
4.2. Perceptions of Heat and Climate Change Risk
4.3. Heat-Protective Behaviors
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Melillo, J.M.; Richmond, T.C.; Yohe, G.W. Climate Change Impacts in the United States; US Global Change Research Program: Washington, DC, USA, 2014; p. 841. [Google Scholar]
- Gronlund, C.J. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: A review. Curr. Epidemiol. Rep. 2014, 1, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Benmarhnia, T.; Deguen, S.; Kaufman, J.S.; Smargiassi, A. Review article: Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta-regression analysis. Epidemiology 2015, 26, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Medina-Ramón, M.; Schwartz, J. Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occup. Environ. Med. 2007, 64, 827–833. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Disparities by race in heat-related mortality in four us cities: The role of air conditioning prevalence. J. Urban Health 2005, 82, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Susceptibility to mortality in weather extremes: Effect modification by personal and small area characteristics in a multi-city case-only analysis. Epidemiology (Cambridge, Mass.) 2013, 24, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Madrigano, J.; Ito, K.; Johnson, S.; Kinney, P.L.; Matte, T. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ. Health Perspect. 2015, 123, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Heat illness and deaths—New York city, 2000–2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 617–621. [Google Scholar]
- Jesdale, B.M.; Morello-Frosch, R.; Cushing, L. The racial/ethnic distribution of heat risk-related land cover in relation to residential segregation. Environ. Health Perspect. (Online) 2013, 121, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Williams, D.R.; Moss, N.E. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annu. Rev. Public Health 1997, 18, 341–378. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.P. Levels of racism: A theoretic framework and a gardener’s tale. Am. J. Public Health 2000, 90, 1212–1215. [Google Scholar] [PubMed]
- Krieger, N.; Bassett, M. The health of black folk: Disease, class, and ideology in science. Mon. Rev. 1986, 38, 74–86. [Google Scholar]
- Lane, K.; Wheeler, K.; Charles-Guzman, K.; Ahmed, M.; Blum, M.; Gregory, K.; Graber, N.; Clark, N.; Matte, T. Extreme heat awareness and protective behaviors in New York City. J. Urban Health 2014, 91, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.G. Hurricane mitigation status and factors influencing mitigation status among florida’s single-family homeowners. Nat. Hazards Rev. 2003, 4, 149–158. [Google Scholar] [CrossRef]
- Akompab, D.A.; Bi, P.; Williams, S.; Grant, J.; Walker, I.A.; Augoustinos, M. Heat waves and climate change: Applying the health belief model to identify predictors of risk perception and adaptive behaviours in adelaide, australia. Int. J. Environ. Res. Public Health 2013, 10, 2164–2184. [Google Scholar] [CrossRef] [PubMed]
- Konisky, D.M.; Hughes, L.; Kaylor, C.H. Extreme weather events and climate change concern. Clim. Chang. 2016, 134, 533–547. [Google Scholar] [CrossRef]
- Maibach, E.W.; Nisbet, M.; Baldwin, P.; Akerlof, K.; Diao, G. Reframing climate change as a public health issue: An exploratory study of public reactions. BMC Public Health 2010, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Myers, T.A.; Nisbet, M.C.; Maibach, E.W.; Leiserowitz, A.A. A public health frame arouses hopeful emotions about climate change. Clim. Chang. 2012, 113, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- New York Office of Temporary and Disability Assistance. Low Income Home Energy Assistance Program. Available online: http://otda.ny.gov/programs/heap/#cooling-assistance (accessed on 30 March 2017).
- Mays, V.M.; Cochran, S.D.; Barnes, N.W. Race, race-based discrimination, and health outcomes among african americans. Annu. Rev. Psychol. 2007, 58, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Mickelson, R.A. When are racial disparities in education the result of racial discrimination? A social science perspective. Teach. Coll. Rec. 2003, 105, 1052–1086. [Google Scholar] [CrossRef]
- Kubisch, A.C. Why structural racism? Why a structural racism caucus? Poverty Race 2006, 15, 1–3. [Google Scholar]
- Williams, D.R.; Mohammed, S.A.; Leavell, J.; Collins, C. Race, socioeconomic status, and health: Complexities, ongoing challenges, and research opportunities. Ann. N. Y. Acad. Sci. 2010, 1186, 69–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, Z.D.; Krieger, N.; Agénor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- De’donato, F.K.; Leone, M.; Scortichini, M.; De Sario, M.; Katsouyanni, K.; Lanki, T.; Basagaña, X.; Ballester, F.; Åström, C.; Paldy, A. Changes in the effect of heat on mortality in the last 20 years in nine european cities. Results from the phase project. Int. J. Environ. Res. Public Health 2015, 12, 15567–15583. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Boggess, B.; Zhang, K. Assessing heat stress and health among construction workers in a changing climate: A review. Int. J. Environ. Res. Public Health 2018, 15, 247. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Sheridan, S.C. A survey of public perception and response to heat warnings across four North American cities: An evaluation of municipal effectiveness. Int. J. Biometeorol. 2007, 52, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Maibach, E.; Roser-Renouf, C.; Leiserowitz, A. Global Warming’s Six Americas 2009: An Audience Segmentation Analysis; Yale University and George Mason University. Yale Project on Climate Change Communication: New Haven, CT, USA, 2009. [Google Scholar]
- Akerlof, K.L.; Delamater, P.L.; Boules, C.R.; Upperman, C.R.; Mitchell, C.S. Vulnerable populations perceive their health as at risk from climate change. Inte. J. Environ. Res. Public Health 2015, 12, 15419–15433. [Google Scholar] [CrossRef] [PubMed]
- Ungar, M. Community resilience for youth and families: Facilitative physical and social capital in contexts of adversity. Child. Youth Serv. Rev. 2011, 33, 1742–1748. [Google Scholar] [CrossRef]
- Aldrich, D.P. Building Resilience: Social Capital in Post-Disaster Recovery; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Chandra, A.; Acosta, J.; Stern, S.; Uscher-Pines, L.; Williams, M.V. Building Community Resilience to Disasters: A Way Forward to Enhance National Health Security; Rand Corporation: Santa Monica, CA, USA, 2011. [Google Scholar]
- New York City Department of Health and Mental Hygiene. Extreme Heat Talking Points. Available online: http://www1.nyc.gov/assets/doh/downloads/pdf/em/extreme-heat-talking-points.pdf (accessed on 30 March 2017).
- Matte, T.D.; Lane, K.; Ito, K. Excess mortality attributable to extreme heat in New York city, 1997–2013. Health Secur. 2016, 14, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Keeter, S.; Hatley, N.; Kennedy, C.; Lau, A. What Low Response Rates Mean for Telephone Surveys; Pew Research Center: Washington, DC, USA, 2017. [Google Scholar]
- Hu, S.S.; Balluz, L.; Battaglia, M.P.; Frankel, M.R. Improving public health surveillance using a dual-frame survey of landline and cell phone numbers. Am. J. Epidemiol. 2011, 173, 703–711. [Google Scholar] [CrossRef] [PubMed]
Category | Characteristic | Unweighted (N) | Weighted (%) |
---|---|---|---|
Sex | Male | 311 | 47 |
Age | 18–29 | 140 | 24 |
30–49 | 233 | 37 | |
50–64 | 202 | 23 | |
65+ | 212 | 16 | |
Missing/Refused | 14 | ||
Race/ethnicity | White Non-Hispanic | 246 | 34 |
Black Non-Hispanic | 189 | 20 | |
Hispanic | 220 | 29 | |
Asian Non-Hispanic | 59 | 12 | |
Other Non-Hispanic | 37 | 5 | |
Missing/Refused | 50 | ||
Borough | Bronx | 147 | 16 |
Brooklyn | 246 | 30 | |
Manhattan | 148 | 21 | |
Queens | 215 | 28 | |
Staten Island | 45 | 6 | |
Household Income | <$30,000 | 212 | 25 |
$30,000–<$50,000 | 126 | 16 | |
$50,000–<$100,000 | 151 | 28 | |
≥$100,000 | 136 | 31 | |
Missing/Refused | 176 | ||
General Health Status | Excellent/Very Good/Good | 668 | 88 |
Fair/poor | 125 | 12 | |
Missing/Refused | 8 | ||
AC 1 Status | No functioning AC | 115 | 13 |
Used never or < half time | 120 | 15 | |
Used half the time or more | 558 | 72 | |
Missing/refused | 8 |
Own/Use | Reason | Unweighted (N) | Weighted (%) | 95% Confidence Interval |
---|---|---|---|---|
Does not own | Can’t afford it | 44 | 40 | (29.5, 49.6) |
Don’t need it | 33 | 33 | (22.8, 42.3) | |
Don’t like AC | 24 | 20 | (12.4, 28.3) | |
Building wiring not equipped | 6 | 8 | (1.5, 13.6) | |
Does not use 2 | Electricity bill | 52 | 24 | (17.6, 29.7) |
Conserve electricity | 47 | 21 | (15.5, 27.3) | |
Did not feel hot | 38 | 17 | (11.8, 23.0) | |
Don’t like AC | 27 | 12 | (7.4, 16.6) | |
Prefer fan | 30 | 13 | (8.0, 17.2) | |
Go elsewhere | 24 | 10 | (5.8, 13.8) | |
Health worse (volunteered) | 8 | 3 | (0.6, 5.8) |
Outcome | Predictor | Univariate OR 1 (95% CI) | Univariate p-Value | Multivariate 2 OR (95% CI) | Multivariate 2 p-Value |
---|---|---|---|---|---|
Does not have AC | Income < $30 K | 2.6 (1.6, 4.3) | <0.001 | 3.1 (1.8, 5.5) | <0.001 |
Non-Hispanic black | 1.9 (1.2, 3.1) | 0.009 | 2.0 (1.1, 3.5) | 0.028 | |
Male | 1.0 (0.7, 1.5) | 0.973 | 1.1 (0.6, 1.9) | 0.760 | |
Age 65 and older | 0.9 (0.5, 1.4) | 0.528 | 0.5 (0.2, 1.1) | 0.083 | |
Low risk perception | 1.1 (0.7, 1.8) | 0.584 | 1.6 (0.9, 2.9) | 0.129 | |
Does not use AC | Income < $30 K | 1.2 (0.7, 2.0) | 0.572 | 1.3 (0.7, 2.2) | 0.373 |
Non-Hispanic black | 1.0 (0.6, 1.8) | 0.905 | 1.2 (0.7, 2.3) | 0.473 | |
Male | 1.2 (0.8, 1.9) | 0.326 | 1.3 (0.8, 2.2) | 0.247 | |
Age 65 and older | 1.1 (0.7, 1.8) | 0.621 | 1.2 (0.7, 2.0) | 0.608 | |
Low risk perception | 1.4 (0.9, 2.2) | 0.122 | 1.3 (0.8, 2.2) | 0.353 |
Outcome | Predictor | Univariate OR 1 (95% CI) | Univariate p-Value | Multivariate 2 OR (95% CI) | Multivariate 2 p-Value |
---|---|---|---|---|---|
Heat warning awareness | Non-Hispanic black | 1.1 (0.7, 1.6) | 0.740 | 0.9 (0.6, 1.4) | 0.731 |
Income < $30 K | 0.7 (0.5, 1.0) | 0.079 | 0.6 (0.4, 1.0) | 0.034 | |
Male | 0.8 (0.6, 1.1) | 0.228 | 1.0 (0.7, 1.5) | 0.889 | |
Age 65 and older | 1.2 (0.8, 1.7) | 0.369 | 1.2 (0.8, 1.9) | 0.376 | |
Low risk perception | 0.7 (0.5, 1.0) | 0.075 | 0.6 (0.4, 0.9) | 0.010 | |
High risk perception 3 | Non-Hispanic black | 1.3 (0.9, 1.9) | 0.179 | 1.2 (0.8, 1.8) | 0.337 |
Income < $30 K | 1.8 (1.3, 2.6) | 0.001 | 1.9 (1.3, 2.8) | 0.001 | |
Male | 0.8 (0.6, 1.1) | 0.121 | 0.6 (0.4, 0.9) | 0.010 | |
Age 65 and older | 0.7 (0.5, 1.0) | 0.060 | 0.7 (0.5, 1.1) | 0.091 | |
Concern 4 | Non-Hispanic black | 1.2 (0.8, 1.8) | 0.298 | 1.3 (0.8, 2.1) | 0.226 |
Income < $30 K | 1.5 (1.0, 2.2) | 0.047 | 1.6 (1.0, 2.3) | 0.032 | |
Male | 0.9 (0.7, 1.3) | 0.576 | 0.9 (0.6, 1.4) | 0.786 | |
Age 65 and older | 0.7 (0.5, 0.9) | 0.023 | 0.7 (0.5, 1.0) | 0.078 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrigano, J.; Lane, K.; Petrovic, N.; Ahmed, M.; Blum, M.; Matte, T. Awareness, Risk Perception, and Protective Behaviors for Extreme Heat and Climate Change in New York City. Int. J. Environ. Res. Public Health 2018, 15, 1433. https://doi.org/10.3390/ijerph15071433
Madrigano J, Lane K, Petrovic N, Ahmed M, Blum M, Matte T. Awareness, Risk Perception, and Protective Behaviors for Extreme Heat and Climate Change in New York City. International Journal of Environmental Research and Public Health. 2018; 15(7):1433. https://doi.org/10.3390/ijerph15071433
Chicago/Turabian StyleMadrigano, Jaime, Kathryn Lane, Nada Petrovic, Munerah Ahmed, Micheline Blum, and Thomas Matte. 2018. "Awareness, Risk Perception, and Protective Behaviors for Extreme Heat and Climate Change in New York City" International Journal of Environmental Research and Public Health 15, no. 7: 1433. https://doi.org/10.3390/ijerph15071433
APA StyleMadrigano, J., Lane, K., Petrovic, N., Ahmed, M., Blum, M., & Matte, T. (2018). Awareness, Risk Perception, and Protective Behaviors for Extreme Heat and Climate Change in New York City. International Journal of Environmental Research and Public Health, 15(7), 1433. https://doi.org/10.3390/ijerph15071433