2-Naphthol Levels and Allergic Disorders in Children
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Allergic Diseases
2.3. Laboratory Methods
2.3.1. Urine Analyses
2.3.2. Total IgE Analysis
2.4. Statistical Analysis
3. Results
3.1. Association between 2-Naphthol Levels and Total IgE Levels
3.2. Association between 2-Naphthol Levels and 8OHdG Levels
3.3. Association between 2-Naphthol Levels and Allergic Diseases
3.4. Associations between 8OHdG and Allergic Diseases
4. Discussion
4.1. Exposure to PAH and Socio-Economic Risks in the Development of Allergic Disorders
4.2. Association between Urinary 2-Naphthol Levels and Allergic Diseases in Children
4.3. Association between Urinary 2-Naphthol Levels and 8-OHdG for the Possible Disease Pathogenesis of Asthma
4.4. Allergic Disorders due to PAH Exposure is Associated with Oxidative Stress and Its Related Biomarkers
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, R.L.; Garfinkel, R.; Lendor, C.; Hoepner, L.; Li, Z.; Romanoff, L.; Sjodin, A.; Needham, L.; Perera, F.P.; Whyatt, R.M. Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatr. Allergy Immunol. 2010, 21, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Karmaus, W.J.; Yang, C.C. Polycyclic aromatic hydrocarbons exposure, oxidative stress, and asthma in children. Int. Arch. Occup. Environ. Health 2017, 90, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Lin, J.; Noth, E.M.; Hammond, S.K.; Nadeau, K.C.; Eisen, E.A.; Balmes, J.R. Traffic-Related Air Pollution and Telomere Length in Children and Adolescents Living in Fresno, CA: A Pilot Study. J. Occup. Environ. Med. 2017, 59, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Balmes, J.R.; Eisen, E.A.; Mann, J.; Noth, E.M.; Lurmann, F.W.; Pratt, B.; Tager, I.B.; Nadeau, K.; Hammond, S.K. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Preuss, R.; Angerer, J.; Drexler, H. Naphthalene—An environmental and occupational toxicant. Int. Arch. Occup. Environ. Health 2003, 76, 556–576. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, S.M.; Waidyanatha, S.; Serdar, B. Naphthalene and its biomarkers as measures of occupational exposure to polycyclic aromatic hydrocarbons. J. Environ. Monit. 2004, 6, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Fermo, P.; Urso, P.; Perrone, M.G.; Piazzalunga, A.; Tarlassi, J.; Carrer, P.; Cavallo, D.M. Particulate-bound polycyclic aromatic hydrocarbon sources and determinants in residential homes. Environ. Pollut. 2016, 218, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Peters, K.O.; Bidad, K.; Strickland, P.T. Polycyclic aromatic hydrocarbons and childhood asthma. Eur. J. Epidemiol. 2015, 30, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.P.; Gariazzo, C.; Gordiani, A.; L’Episcopo, N.; Gherardi, M. Children and elders exposure assessment to particle-bound polycyclic aromatic hydrocarbons (PAHs) in the city of Rome, Italy. Environ. Sci. Pollut. Res. Int. 2014, 21, 13152–13159. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.M.; Rose, R.L.; Hodgson, E. In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes. Drug Metab. Dispos. 2006, 34, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Cho, S.H.; Kim, H.; Lee, C.H. Correlation of urinary 1-hydroxypyrene and 2-naphthol with total suspended particulates in ambient air in municipal middle-school students in Korea. Arch. Environ. Health 2002, 57, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, S.H.; Kang, J.W.; Kim, Y.D.; Nan, H.M.; Lee, C.H.; Lee, H.; Kawamoto, T. Urinary 1-hydroxypyrene and 2-naphthol concentrations in male Koreans. Int. Arch. Occup. Environ. Health 2001, 74, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Han, X.D. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells. Reprod. Toxicol. 2006, 22, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.W.; Chen, M.L.; Huang, L.W.; Yang, W.; Wu, K.Y.; Huang, Y.F. Prenatal nonylphenol exposure, oxidative and nitrative stress, and birth outcomes: A cohort study in Taiwan. Environ. Pollut. 2015, 207, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Barr, D.B.; Serdar, B.; Rappaport, S.M.; Hauser, R. Utility of urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and naphthalene exposure in an epidemiology study. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Szczeklik, A.; Szczeklik, J.; Galuszka, Z.; Musial, J.; Kolarzyk, E.; Targosz, D. Humoral immunosuppression in men exposed to polycyclic aromatic hydrocarbons and related carcinogens in polluted environments. Humoral immunosuppression in men exposed to polycyclic aromatic hydrocarbons and related carcinogens in polluted environments. Environ. Health Perspect. 1994, 102, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Cincinelli, A.; Martellini, T.; Malik, R.N. A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. Environ. Sci. Pollut. Res. Int. 2015, 22, 4076–4098. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M. Serum polycyclic aromatic hydrocarbons among children with and without asthma: Correlation to environmental and dietary factors. Int. J. Occup. Med. Environ. Health 2008, 21, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Lin, T.J. FLG P478S polymorphisms and environmental risk factors for the atopic march in Taiwanese children: A prospective cohort study. Ann. Allergy Asthma Immunol. 2015, 114, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Rajka, G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. 1980, 92, 44–47. [Google Scholar]
- Brozek, J.L.; Bousquet, J.; Baena-Cagnani, C.E.; Bonini, S.; Canonica, G.W.; Casale, T.B.; van Wijk, R.G.; Ohta, K.; Zuberbier, T.; Schünemann, H.J. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J. Allergy Clin. Immunol. 2010, 126, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bateman, E.D.; Becker, A.; Boulet, L.P.; Cruz, A.A.; Drazen, J.M.; Haahtela, T.; Hurd, S.S.; Inoue, H.; de Jongste, J.C.; et al. A summary of the new GINA strategy: A roadmap to asthma control. Eur. Respir. J. 2015, 46, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Novak, N.; Klopp, N.; Baurecht, H.; Wagenpfeil, S.; Rummler, L.; Ring, J.; Behrendt, H.; Illig, T. Lack of association between Toll-like receptor 2 and Toll-like receptor 4 polymorphisms and atopic eczema. J. Allergy Clin. Immunol. 2006, 118, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K. Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bull. Environ. Contam. Toxicol. 2013, 91, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Ro, Y.S. Indoor Characteristics of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere of Taipei. Atmos. Environ. 2000, 34, 611–620. [Google Scholar] [CrossRef]
- Krugly, E.; Martuzevicius, D.; Sidaraviciute, R.; Ciuzas, D.; Prasauskas, T.; Kauneliene, V.; Stasiulaitiene, I.; Kliucininkas, L. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos. Environ. 2014, 82, 298–306. [Google Scholar] [CrossRef]
- Oliveira, C.; Martins, N.; Tavares, J.; Pio, C.; Cerqueira, M.; Matos, M.; Silva, H.; Oliveira, C.; Camoes, F. Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 2011, 83, 1588–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, I.J.; Tung, T.H.; Tang, C.S.; Zhao, Z.H. Allergens, air pollutants, and childhood allergic diseases. Int. J. Hyg. Environ. Health 2016, 219, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Pan, X.C.; Kim, S.Y.; Park, K.; Kim, Y.H.; Kim, H.; Hong, Y.C. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in schoolchildren. Environ. Health Perspect. 2010, 118, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Mudway, I.S. Protein oxidation at the air-lung interface. Amino Acids 2003, 25, 375–396. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, N.; Wiczkowski, A. Analytics of oxidative stress markers in the early diagnosisof oxygen DNA damage. Adv. Clin. Exp. Med. 2017, 26, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.; Pye, C.; Al-Shabrawey, M.; Elmarakby, A.A. Inhibition of 12/15-lipoxygenase reduces renal inflammation and injury in streptozotocin-induced diabetic mice. J. Diabetes Metab. 2015, 6, 555. [Google Scholar] [PubMed]
- Har, R.; Scholey, J.W.; Daneman, D.; Mahmud, F.H.; Dekker, R.; Lai, V.; Elia, Y.; Fritzler, M.L.; Sochett, E.B.; Reich, H.N.; et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia 2013, 56, 1166–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyskocil, A.; Fiala, Z.; Chenier, V.V.; Krajak, L.; Ettlerova, E.; Bukac, J.; Viau, C.; Emminger, S. Assessment of multipathway exposure of small children to PAH. Environ. Toxicol. Pharmacol. 2000, 8, 111–118. [Google Scholar] [CrossRef]
- Ohnishi, S.; Hiraku, Y.; Hasegawa, K.; Hirakawa, K.; Oikawa, S.; Murata, M.; Kawanishi, S. Mechanism of oxidative DNA damage induced by metabolites of carcinogenic naphthalene. Mutat. Res. Genet. Toxicol. Eviron. Mutagen. 2018, 827, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Turkall, R.M.; Skowronski, G.A.; Kadry, A.M.; Abdel-Rahman, M.S. A comparative study of the kinetics and bioavailability of pure and soil-adsorbed naphthalene in dermally exposed male rats. Arch. Environ. Contam. Toxicol. 1994, 26, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Aldakheel, F.M.; Thomas, P.S.; Bourke, J.E.; Matheson, M.C.; Dharmage, S.C.; Lowe, A.J. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: A systematic review. Allergy 2016, 71, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Alokail, M.S.; Abd-Alrahman, S.H.; Draz, H.M.; Yakout, S.M.; Clerici, M. Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: A case-control study. Environ. Health 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sobus, J.R.; McClean, M.D.; Herrick, R.F.; Waidyanatha, S.; Nylander-French, L.A.; Kupper, L.L.; Rappaport, S.M. Comparing urinary biomarkers of airborne and dermal exposure to polycyclic aromatic compounds in asphalt-exposed workers. Ann. Occup. Hyg. 2009, 53, 561–571. [Google Scholar] [PubMed]
- St Helen, G.; Goniewicz, M.L.; Dempsey, D.; Wilson, M.; Jacob, P., III; Benowitz, N.L. Exposure and kinetics of polycyclic aromatic hydrocarbons (PAHs) in cigarette smokers. Chem. Res. Toxicol. 2012, 25, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Nepomnaschy, P.A.; Baird, D.D.; Weinberg, C.R.; Hoppin, J.A.; Longnecker, M.P.; Wilcox, A.J. Within-person variability in urinary bisphenol A concentrations: Measurements from specimens after long-term frozen storage. Environ. Res. 2009, 109, 734–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Asthma | AR | AD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | Total | Asthma | Non-Asthma | p-Value | AR | Non-AR | p-Value | AD | Non-AD | p-Value |
Total number | 453 | 118 | 335 | 144 | 309 | 53 | 400 | |||
Mother | ||||||||||
Maternal age (years old) | ||||||||||
Mean ± SD | 29.39 ± 4.4 | 29.62 ± 4.1 | 29.31 ± 4.5 | 0.64 | 29.37 ± 4.52 | 39.40 ± 4.29 | 0.41 | 29.54 (3.49) | 29.47 (4.47) | 0.065 |
Maternal education (%) | ||||||||||
≥College | 118 (26.1) | 32 (25.4) | 86 (26.3) | 0.89 | 40 (31.8) | 78 (23.9) | 0.67 | 15 (28.3) | 103 (25.8) | 0.86 |
Maternal history of atopy (%) | ||||||||||
Yes | 126 (27.8) | 46 (36.5) | 80 (24.5) | 0.002 | 56 (38.9) | 70 (22.7) | 0.001 * | 25 (47.2) | 101 (25.3) | 0.002 * |
Children | ||||||||||
Male (%) | 187 (41.3) | 47 (37.3) | 140 (42.8) | 0.50 | 94 (82.5) | 156 (50.5) | 0.012 * | 35 (66.0) | 214 (53.5) | 0.16 |
Gestational age (%) | ||||||||||
<37weeks | 353 (77.9) | 91 (72.2) | 262 (80.1) | 0.99 | 111 (77.1) | 242 (78.3) | 0.73 | 42 (79.2) | 311 (77.8) | 0.37 |
Parity (%) | ||||||||||
<2 | 315 (69.5) | 84 (66.7) | 231 (70.6) | 0.64 | 105 (72.9) | 210 (68.0) | 0.30 | 41 (77.4) | 274 (68.5) | 0.10 |
Environmental factors | ||||||||||
Breast feeding (%) | ||||||||||
Yes | 292 (64.4) | 75 (59.5) | 217 (66.4) | 0.42 | 91 (63.2) | 201 (65.1) | 0.33 | 37 (69.8) | 255 (63.8) | 0.69 |
Incensing at home (%) | ||||||||||
Yes | 220 (48.6) | 65 (51.6) | 155 (47.4) | 0.16 | 76 (52.8) | 144 (46.6) | 0.33 | 27 (50.9) | 193 (48.3) | 0.84 |
ETS exposure (%) | ||||||||||
Yes | 184 (40.6) | 58 (46.0) | 126 (38.5) | 0.028 * | 70(48.6) | 114(36.9) | 0.028 * | 26 (49.1) | 158 (39.5) | 0.19 |
Family income per year (NT dollars) (%) | ||||||||||
<600,000 | 110 (31.3) | 25 (29.4) | 85 (32.0) | 0.80 | 39 (36.8) | 71 (29.0) | 0.064 | 13 (31.7) | 97 (31.3) | 0.99 |
600,000–1,500,000 | 213 (60.7) | 52 (61.2) | 161 (60.5) | 55 (51.9) | 158(64.5) | 25 (61.0) | 188 (60.7) | |||
>1,500,000 | 28 (8.0) | 8 (9.4) | 20 (7.5) | 12 (11.3) | 16 (6.5) | 3 (7.3) | 25 (8.1) |
Characteristics | Mean ± SD | p-Value |
---|---|---|
Mother | ||
Maternal age | ||
<34 years | 3.74 (14.50) | 0.263 |
≥34 years | 1.55 (2.81) | |
Maternal education | ||
<College | 4.06 (15.41) | 0.030 * |
≥College | 1.71 (3.49) | |
Maternal history of atopy | ||
No | 3.30 (15.28) | 0.881 |
Yes | 3.06 (7.77) | |
Children | ||
Gender Male | 4.89 (20.77) | 0.125 |
Female | 2.51 (6.97) | |
Birth weight | ||
<2500 g | 3.35 (13.40) | 0.533 |
≥2500 g | 1.19 (1.23) | |
Gestational age | ||
<37 weeks | 3.28 (13.31) | 0.609 |
≥37 weeks | 2.00 (4.86) | |
Parity | ||
<2 | 3.51 (14.07) | 0.571 |
≥2 | 2.45 (5.49) | |
Environmental factors | ||
Breast feeding | ||
No | 2.65 (5.89) | 0.690 |
Yes | 3.33 (14.08) | |
Incensing at home | ||
No | 4.46 (18.29) | 0.189 |
Yes | 2.38 (5.89) | |
ETS exposure | ||
No | 3.04 (11.90) | 0.771 |
Yes | 3.44 (13.89) | |
Family income per year | ||
<600,000 NT dollars | 4.18 (16.96) | 0.599 |
≥600,000–1,500,000 NT dollars | 3.29 (12.21) | |
>1,500,000 NT dollars | 1.21 (1.18) |
Total (n = 453) | Ln-Naphthol | 95% CI | p |
---|---|---|---|
blood IgE | |||
Adjusted β a | 0.78 | (−4.16–2.60) | 0.649 |
Boys (n = 262) | Ln-naphthol | P | |
blood IgE | |||
Adjusted β a | 0.16 | (−3.69–3.37) | 0.926 |
Girls (n = 191) | Ln-naphthol | P | |
blood IgE | |||
Adjusted β a | 7.36 | (−21.19–6.47) | 0.286 |
Total (n = 453) | Ln-Naphthol | p |
---|---|---|
8-OHdG (ng/mL) | ||
Adjusted β (95% CI) | 100.61 (49.41–151.81) | <0.001 * |
Boys (n = 261) | Ln-naphthol | |
8-OHdG (ng/mL) | ||
Adjusted β (95% CI) a | 104.95 (17.05–192.85) | 0.020 * |
Girls (n = 191) | Ln-naphthol | |
8-OhdG (ng/mL) | ||
Adjusted β (95% CI) a | 144.29 (52.32–236.26) | 0.002 * |
Total (n = 453) | Naphthol | ||||
---|---|---|---|---|---|
<0.47 ng/mL | 0.47–0.74 ng/mL | 0.74–1.60 ng/mL | >1.60 ng/mL | ||
Asthma Adjusted OR (95% CI) a | 1.00 | 1.32 (0.54–3.24) | 1.07 (0.42–2.73) | 3.14 (1.34–7.35) * | |
Boys | 1.00 | 2.43 (0.67–8.79) | 0.82 (0.19–3.66) | 4.09 (1.17–14.31) * | |
Girls | 1.00 | 0.64 (0.17–2.50) | 1.49 (0.44–5.02) | 3.34 (1.04–10.71) * | |
Allergic rhinitis Adjusted OR (95% CI) a | 1.00 | 0.67 (0.30–1.49) | 0.93 (0.43–2.01) | 1.60 (0.75–3.38) | |
Boys | 1.00 | 0.84 (0.30–2.38) | 0.77 (0.27–2.21) | 1.65 (0.61–4.46) | |
Girls | 1.00 | 0.43 (0.11–1.62) | 1.08 (0.34–3.43) | 1.32 (0.41–4.30) | |
Atopic dermatitis Adjusted OR (95% CI) a | 1.00 | 0.57 (0.15–2.12) | 1.09 (0.34–3.45) | 1.88 (0.64–5.51) | |
Boys | 1.00 | 0.53 (0.08–3.39) | 0.77 (0.14–4.12) | 1.69 (0.38–7.52) | |
Girls | 1.00 | 0.63 (0.10–4.16) | 1.34 (0.26–6.88) | 1.98 (0.40–9.73) |
Total (n = 453) | 8-OhdG | ||
---|---|---|---|
<17.9056 | >17.9056 | ||
Asthma Adjusted OR (95% CI) a | total | 1.00 | 10.75 (4.85–23.81) * |
Allergic rhinitis Adjusted OR (95% CI) a | total | 1.00 | 11.00 (5.47–22.12) * |
Atopic dermatitis Adjusted OR (95% CI) a | total | 1.00 | 16.89 (3.94–72.38) * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-J.; Guo, Y.L.; Hsu, J.-C.; Wang, I.-J. 2-Naphthol Levels and Allergic Disorders in Children. Int. J. Environ. Res. Public Health 2018, 15, 1449. https://doi.org/10.3390/ijerph15071449
Lin T-J, Guo YL, Hsu J-C, Wang I-J. 2-Naphthol Levels and Allergic Disorders in Children. International Journal of Environmental Research and Public Health. 2018; 15(7):1449. https://doi.org/10.3390/ijerph15071449
Chicago/Turabian StyleLin, Tien-Jen, Yueliang Leon Guo, Jiin-Chyr Hsu, and I-Jen Wang. 2018. "2-Naphthol Levels and Allergic Disorders in Children" International Journal of Environmental Research and Public Health 15, no. 7: 1449. https://doi.org/10.3390/ijerph15071449
APA StyleLin, T. -J., Guo, Y. L., Hsu, J. -C., & Wang, I. -J. (2018). 2-Naphthol Levels and Allergic Disorders in Children. International Journal of Environmental Research and Public Health, 15(7), 1449. https://doi.org/10.3390/ijerph15071449