Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings
Abstract
:1. Introduction
- Definitions of albedo and reflectance, including the range of how the terms are used in the literature.
- Reported albedo and reflectance measurements focusing on local or immediate surroundings with specific focus on UV albedo or reflectance. Total solar albedo or reflectance papers that do not specifically refer to UV radiation will not be considered here.
- Similar surface types will be grouped for comparison and visually analysed if sufficient data is available, otherwise data will be tabulated.
- Broadband and spectral measurements will be presented separately.
- Method of measurement, including reviewing range of devices implemented.
- Review the influence of UV albedo/reflectance on individual UV exposure.
2. Albedo and Reflectance Definitions
3. Albedo and Reflectance Measurements
3.1. UV Albedo Measurements—Broadband
3.2. UV Albedo Measurements—Spectral
3.3. UV Reflectance
4. Measurement Design
5. Influence on Personal UV Exposure by Reflected UV Radiation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McKenzie, R.L.; Bjorn, L.O.; Bais, A.; Ilyasd, M. Changes in Biologically Active Ultraviolet Radiation Reaching the Earth’s Surface. Photochem. Photobiol. Sci. 2003, 2, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Godar, D.E. UV Doses Worldwide. Photochem. Photobiol. 2005, 81, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; McMichael, A.J.; Armstrong, B.K.; Smith, W.T. Estimating the Global Disease Burden Due to Ultraviolet Radiation Exposure. Int. J. Epidemiol. 2008, 37, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Engelsen, O. Calculated Ultraviolet Exposure Levels for a Healthy Vitamin D Status. Photochem. Photobiol. 2006, 82, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.K. How Sun Exposure Causes Skin Cancer: An Epidemiological Perspective. In Prevention of Skin Cancer; Hill, D., Elwood, J.M., English, D.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 3, pp. 89–116. [Google Scholar]
- Kerr, J.B. Understanding Factors That Affect Surface UV Radiation. In Proceedings of SPIE—The International Society for Optical Engineering: Ultraviolet Ground and Space-Based Measurements, Models and Effects III; Slusser, J.R., Herman, J.R., Gao, W., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 5156, pp. 1–13. [Google Scholar]
- Parisi, A.V.; Turnbull, D.J. Shade Provision for UV Minimisation: A Review. Photochem. Photobiol. 2014, 90, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Kukla, G. Surface Albedo. In Climatic Variations and Variability: Facts and Theories; Berger, A., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 72. [Google Scholar]
- Coakley, J.A. Surface Reflectance and Albedo. In Encyclopedia of Atmospheric Sciences; James, R.H., Ed.; Academic Press: Oxford, UK, 2003; pp. 1914–1923. [Google Scholar]
- Lenoble, J. Radiative Energy: Major Concepts and Interaction with Matter. In Atmospheric Radiative Transfer; A Deepak Publishing: Hampton, VA, USA, 1993; pp. 5–27. [Google Scholar]
- Hapke, B. The Bidirectional Reflectance of a Semi-Infinite Medium. In Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 2012; pp. 180–220. [Google Scholar]
- Bacon, D. Reflection and Scattering from Rough Surfaces. In Propagation of Radiowaves, 2nd ed.; Barclay, L., Ed.; The Institution of Electrical Engineers: London, UK, 2003. [Google Scholar]
- Ahn, J.S.; Hendricks, T.R.; Lee, I. Control of Specular and Diffuse Reflection of Light Using Particle Self-Assembly at the Polymer and Metal Interface. Adv. Funct. Mater. 2007, 17, 3619–3625. [Google Scholar] [CrossRef]
- Sliney, D.H. Physical Factors in Cataractogenesis: Ambient Ultraviolet Radiation and Temperature. Investig. Ophthalmol. Vis. Sci. 1986, 27, 781–790. [Google Scholar]
- Hapke, B. Integrated Reflectances and Planetary Photometry. In Theory of Reflectance and Emittance Spectroscopy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 287–302. [Google Scholar]
- Weihs, P. Influence of Ground Reflectivity and Topography on Erythemal UV Radiation on Inclined Planes. Int. J. Biometeorol. 2002, 46, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Nayar, S.K.; Ikeuchi, K.; Kanade, T. Surface Reflection: Physical and Geometrical Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 611–634. [Google Scholar] [CrossRef]
- Pope, S.; Godar, D. Solar UV Geometric Conversion Factors: Horizontal Plane to Cylinder Model. Photochem. Photobiol. 2010, 86, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Weihs, P.; Blumthaler, M. Spectral UV Irradiance on Vertical Surfaces: A Case Study. Photochem. Photobiol. 1999, 69, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Parisi, A.V. Improved Method of Ultraviolet Radiation Reflection Measurement for Non-Horizontal Urban Surfaces. Meas. Sci. Technol. 2012, 23, 045701. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Parisi, A.V. Investigation of Correlation of Broadband UVA Reflection to Broadband Visible Reflection for a Variety of Surfaces in the Built Environment. Build. Environ. 2018, 136, 259–268. [Google Scholar] [CrossRef]
- Berdahl, P.; Bretz, S.E. Preliminary Survey of the Solar Reflectance of Cool Roofing Materials. Energy Build. 1997, 25, 149–158. [Google Scholar] [CrossRef]
- Blumthaler, M.; Ambach, W. Solar UVB Albedo of Various Surfaces. Photochem. Photobiol. 1988, 48, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Castro, T.; Mar, B.; Longoria, R.; Ruiz-Suarez, L.; Morales, L. Surface Albedo Measurements in Mexico City Metropolitan Area. Atmosfera 2001, 14, 69–74. [Google Scholar]
- Correa, M.D.; Ceballos, J.C. UVB Surface Albedo Measurements Using Biometers. Rev. Bras. Geofísica 2008, 26, 411–416. [Google Scholar] [CrossRef]
- Diffey, B.; Green, A.T.; Loftus, M.J.; Johnson, G.J.; Lee, P.S. A Portable Instrument for Measuring Ground Reflectance in the Ultraviolet. Photochem. Photobiol. 1995, 61, 68–70. [Google Scholar] [CrossRef]
- Feister, U.; Grewe, R. Spectral Albedo Measurements in the UV and Visible Region over Different Types of Surfaces. Photochem. Photobiol. 1995, 62, 736–744. [Google Scholar] [CrossRef]
- Heisler, G.M.; Grant, R.H. Ultraviolet Radiation in Urban Ecosystems with Consideration of Effects on Human Health. Urban Ecosyst. 2000, 4, 193–229. [Google Scholar] [CrossRef]
- ICNIRP. Protecting Workers from Ultraviolet Radiation; ICNIRP 14/2007; International Commision on Non-Ionising Radiation Protection: Oberschleissheim, Germany, 2007. [Google Scholar]
- Lester, R.A.; Parisi, A.V. Spectral Ultraviolet Albedo of Roofing Surfaces and Human Facial Exposure. Int. J. Environ. Health Res. 2002, 12, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Han, C.; Liu, C. A Comparison of the Albedo of Asian Building Materials in Visible and UVB Regions. In Proceedings of the International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011. [Google Scholar]
- McKenzie, R.L.; Kotkamp, M.; Ireland, W. Upwelling UV Spectral Irradiances and Surface Albedo Measurements at Lauder, New Zealand. Geophys. Res. Lett. 1996, 23, 1757–1760. [Google Scholar] [CrossRef]
- Parker, D.S.; McIlvaine, J.E.R.; Barkaszi, S.F.; Beal, D.J.; Anello, M.T. Laboratory Testing of the Reflectance Properties of Roofing Materials; Florida Solar Energy Center: Cocoa, FL, USA, 2000. [Google Scholar]
- Reuder, J.; Ghezzi, F.; Palenque, E.; Torrez, R.; Andrade, M.; Zaratti, F. Investigations on the Effect of High Surface Albedo on Erythemally Effective UV Irradiance: Results of a Campaign at the Salar De Uyuni, Bolivia. J. Photochem. Photobiol. B Boil. 2007, 87, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, F.S.; Phoon, C.; Bakalion, A.E.; Taylor, H.R. The Occular Dose of Ultraviolet Radiation to Outdoor Workers. Investig. Ophthalmol. Vis. Sci. 1988, 29, 649–656. [Google Scholar]
- Webb, A.; Stromberg, I.; Li, H.; Bartlett, L. Airborne Spectral Measurements of Surface Reflectivity at Ultraviolet and Visible Wavelengths. J. Geophys. Res. 2000, 105, 4945–4948. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Warren, S.G.; Mullen, P.C. Reflection of Solar Radiation by the Antarctic Snow Surface at Ultraviolet, Visible and near-Infrared Wavelengths. J. Geophys. Res. 1994, 99, 18669–18684. [Google Scholar] [CrossRef]
- Warren, S.G. Optical Properties of Snow. Rev. Geophys. Space Phys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.J.; Warren, S.G. A Model for the Spectral Albedo of Snow. I: Pure Snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef] [Green Version]
- Wuttke, S.; Seckmeyer, G.; Konig-Langlo, G. Measurements of Spectral Snow Albedo at Neumayer, Antarctica. Ann. Geophys. 2006, 24, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Levinson, R.; Akbari, H. Effects of Composition and Exposure on the Solar Reflectance of Portland Cement Concrete. Cem. Concr. Res. 2002, 32, 1679–1698. [Google Scholar] [CrossRef]
- Kultur, S.; Turkeri, N. Assessment of Long Term Solar Reflectance Performance of Roof Coverings Measured in Laboratory and in Field. Build. Environ. 2012, 48, 164–172. [Google Scholar] [CrossRef]
- Doda, D.; Green, A. Surface Reflectance Measurements in the UV from an Airborne Platform. Part 1. Appl. Opt. 1980, 19, 2140–2145. [Google Scholar] [CrossRef] [PubMed]
- Doda, D.; Green, A. Surface Reflectance Measurements in the Ultraviolet from an Airborne Platform. Part 2. Appl. Opt. 1981, 20, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Parisi, A.V.; Turnbull, D. Reflected Solar Radiation from Horizontal, Vertical and Inclined Surfaces: Ultraviolet and Visible Spectral and Broadband Behaviour Due to Solar Zenith Angle, Orientation and Surface Type. J. Photochem. Photobiol. B-Boil. 2008, 92, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulson, K.L.; Reynolds, D.W. The Spectral Reflectance of Natural Surfaces. J. Appl. Meteorol. 1971, 10, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Turner, J. Ultraviolet Radiation Reflection: Characterisation, Quantification and the Resulting Effects. Ph.D. Thesis, University of Southern Queensland, Toowoomba, Australia, 2011. [Google Scholar]
- Meinander, O.; Kontu, A.; Lakkala, K.; Heikkila, A.; Ylianttila, L.; Toikka, M. Diurnal Variations in the UV Albedo of Arctic Snow. Atmos. Chem. Phys. 2008, 8, 6551–6563. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Worby, A.P.; Grenfell, T.C. Surface Albedo of the Antarctic Sea Ice Zone. J. Clim. 2005, 18, 3606–3622. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Parisi, A.V. Ultraviolet Reflection Irradiances and Exposures in the Constructed Environment for Horizontal, Vertical and Inclined Surfaces. Photochem. Photobiol. 2013, 89, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Hulburt, E.O. The Reflecting Power of Metals in the Ultraviolet Region of the Spectrum. Astrophys. J. 1915, 42, 205–230. [Google Scholar] [CrossRef]
- Edwards, J.D. Aluminium Reflectors. Trans. Illum. Eng. Soc. 1939, 34, 427–440. [Google Scholar]
- Luckiesh, M. Reflection and Transmission. In Applications of Germicidal, Erythemal and Infrared Energy; D. Van Nostrand Company, Inc.: New York, NY, USA, 1946; pp. 375–451. [Google Scholar]
- Luckiesh, M.; Taylor, A.H. Transmittance and Reflectance of Germicidal (Lambda 2537) Energy. J. Opt. Soc. Am. 1946, 36, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Stutz, G.F.A. Observations of Spectro-Photometric Measurements of Paint Vehicles and Pigments in the Ultra-Violet. J. Frankl. Inst. 1925, 200, 87–102. [Google Scholar] [CrossRef]
- Taylor, A.H. Reflection Factors of Various Materials for Visible and Ultraviolet Radiation. J. Opt. Soc. Am. 1934, 24, 192–193. [Google Scholar] [CrossRef]
- Taylor, A.H. Light and Ultraviolet Reflection by Various Materials. Trans. Illum. Eng. Soc. 1935, 30, 563–566. [Google Scholar]
- Taylor, A.H. Ultraviolet Reflectance Characteristics of Various Materials. Illum. Eng. 1941, 36, 927–930. [Google Scholar]
- Wilcock, D.F.; Soller, W. Paints to Reflect Ultraviolet Light. Ind. Eng. Chem. 1940, 32, 1446–1451. [Google Scholar] [CrossRef]
- Luckiesh, M. Ultraviolet Radiation Reflection. In Ultraviolet Radiation: Its Properties, Production, Measurement, and Applications; D Van Nostrand Company: New York, NY, USA, 1922; pp. 93–106. [Google Scholar]
- Mobley, C.; Diffy, B. The Solar Ultraviolet Environment at the Ocean. Photochem. Photobiol. 2018, 94, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Gies, H.P.; Wright, J. Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry. Photochem. Photobiol. 2003, 78, 342–348. [Google Scholar] [CrossRef]
- Grifoni, D.; Carreras, G.; Sabatini, F.; Zipoli, G. UV Hazard on a Summer’s Day under Mediterranean Conditions, and the Protective Role of a Beach Umbrella. Int. J. Biometeorol. 2005, 50, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Milon, A.; Sottas, P.E.; Bulliard, J.L.; Vernez, D. Effective Exposure to Solar UV in Building Workers: Influence of Local and Individual Factors. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Enzi, C.; Wallisch, S.; Holawe, F.; Maier, B.; Weihs, P. UV Exposition During Typical Lifestyle Behavious in an Urban Environment. Photochem. Photobiol. 2010, 86, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Siani, A.M.; Casale, G.R.; Diemoz, H.; Agnesod, G.; Kimlin, M.G.; Lang, C.A.; Colosimo, A. Personal UV Exposure in High Albedo Alpine Sites. Atmos. Chem. Phys. 2008, 8, 3749–3760. [Google Scholar] [CrossRef]
- Cockell, C.S.; Scherer, K.; Horneck, G.; Rettberg, P.; Facius, R.; Gugg-Helminger, A.; Driscoll, C.; Lee, P. Exposure of Arctic Field Scientists to Ultraviolet Radiation Evaluated Using Personal Dosimeters. Photochem. Photobiol. 2001, 74, 570–578. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Paulin, K.J.; Madronich, S. Effects of Snow Cover on UV Irradiance and Surface Albedo: A Case Study. J. Geophys. Res. 1998, 103, 28785–728792. [Google Scholar] [CrossRef]
- Kylling, A.; Dahlback, A.; Mayer, B. The Effect of Clouds and Surface Albedo on UV Irradiances at a High Lattitude Site. Geophys. Res. Lett. 2000, 27, 1411–1414. [Google Scholar] [CrossRef]
- Bernhard, G.; Booth, C.R.; Ehramjian, J.C.; Stone, R.; Dutton, E.G. Ultraviolet and Visible Radiation at Barrow, Alaska: Climatology and Influencing Factors on the Basis of Version 2 National Science Foundation Network Data. J. Geophys. Res. 2001, 112, 1–19. [Google Scholar] [CrossRef]
- Kreuter, A.; Blumthaler, M.; Webb, A.; Bais, A.; Kift, R.; Kouremeti, N. Effects of Albedo on Solar Irradiance. In Advances in Meteorology, Climatology and Atmospheric Physics; Helmis, C., Nastos, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1089–1095. [Google Scholar]
- Kreuter, A.; Buras, R.; Mayer, B.; Webb, A.R.; Kift, R.; Bais, A.; Kouremeti, N.; Blumthaler, M. Solar Irradiance in the Heterogenous Albedo Environment of the Arctic Coast: Measurements and a 3-D Model Study. Atmos. Chem. Phys. 2014, 14, 5989–6002. [Google Scholar] [CrossRef]
- Lenoble, J. Modeling of the Influence of Snow Reflectance on Ultraviolet Irradiance for Cloudless Sky. Appl. Opt. 1998, 37, 2441–2447. [Google Scholar] [CrossRef] [PubMed]
- Weatherhead, B.; Tanskanen, A.; Stevermer, A. Ozone and Ultraviolet Radiation. In Arctic Climate Impact Assessment; Cambridge University Press: New York, NY, USA, 2005; pp. 151–182. [Google Scholar]
- Weber, M.; Graber, F.; Schulmeister, K.; Brusl, H.; Hann, H.; Kindl, P.; Knuschke, P. Solar UVR Exposure of Outdoor Workers (Tinsmiths) in Austria. In UV Radiation and Its Effects—An Update 2006: Report of the NIWA UV Workshop; NIWA: Dunedin, New Zealand, 2006. [Google Scholar]
- Turner, J.; Parisi, A.V. Measuring the Influence of UV Reflection from Vertical Metal Surfaces on Humans. Photochem. Photobiol. Sci. 2009, 8, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Parisi, A.V. Influence of Reflected UV Irradiance on Occupational Exposure from Combinations of Reflective Wall Surfaces. Photochem. Photobiol. Sci. 2013, 12, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, F.; Gao, Y.; Yang, Z.; Hu, L.; Gao, Q.; Ri, J.; Liu, Y. The Enhancement of Biological Occular UV Radiation on Beaches Compared to the Radiation on Grass. J. Photochem. Photobiol. B Boil. 2014, 141, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.V.; Sabburg, J.; Kimlin, M.G.; Downs, N. Measured and Modelled Contributions to UV Exposures by the Albedo of Surfaces in an Urban Environment. Theor. Appl. Clim. 2003, 76, 181–188. [Google Scholar] [CrossRef] [Green Version]
Term | Behaviour of Radiation from Source or Recorded at Detector |
---|---|
Directional | Highly collimated (narrow focus beam) |
Conical | Medium collimated source (may be considered broad beam) |
Hemispherical | Limited collimated source |
ID | Author-Date Identifier | Instrument Used | Light Source | Measurement Type | Method | Location | Distance from Surface |
---|---|---|---|---|---|---|---|
1 | Diffey et al., 1995 [26] | Double GaP photodiode Radiometer Calibrated to spectroradiometer + diffuse reflectance spectrometer | Sun | Broadband and spectral (relative to standard white reflectance surface) | Upwelling and downwelling irradiance measured concurrently | Canada England Saudi Arabia | Not stated |
2 | Reuder et al., 2007 [34] | Radiometer (UV-S-E-T 001) Erythemal radiation reflected | Sun | Broadband | Increase in UVIndex (ratio) | Salar de Uyuni, Bolivia | 2.0 m from ground |
3 | McKenzie 1996 [32] | Erythemal monitor spectroradiometer | Sun | Broadband | Upwelling and downwelling irradiance measured consecutively | New Zealand | Assumed 1.6m height comparable to spectral Grass approx. 30 cm height |
4 | Blumthaler & Ambach 1988 [23] | R-B meter, Star pyranometer | Direct sunlight & overcast sky | Broadband | Erythemal albedo. Also: Total solar (0.3 to 3 µm) albedo consecutive | Alpine regions Austria | 0.3–0.5 m from ground |
5 | Lester & Parisi 2002 [30] | Spectro-radiometer (integrated) | Sun | Spectral & Broadband + Biologically weighted | Upwelling and downwelling, sun normal, consecutive | Toowoomba, Australia | 1.7 m from surface |
6 | Feister & Grewe 1995 [27] | Spectro-radiometer (integrated up to 315 nm) OL752/10 Optronic Laboratories Biologically weighted for different spectra | Sun | Spectral | UVB Upwelling and downwelling irradiance measured consecutively | Germany | 2.0 m from ground |
7 | ICNIRP 2007 [29] a—reported in text Section 2.2.2 b—reported in Section 4.4 and Table B-7 | Unknown Diffuse reflectance ICNIRP effective solar UVB | Assumed sun | Broadband | Not stated | Not stated | Not stated |
8 | Sliney 1986 [14] | International Light Model 730 UV radiometer (295–315 nm) calibrated to spectroradiometer | Sun | Broadband | Upwelling and downwelling irradiance (diffuse) measured consecutively | Not stated | Not stated |
9 | Heisler & Grant 2000 [28] | Refer to ID 4 [23] & ID 8 [14] | Reports Blumthaler and Ambach 1998 [23] and Sliney 1986 [14] | ||||
10 | Rosenthal 1988 [35] | SCS280 detector Radiometer (295 nm to 350 nm) | Assumed sun | Broadband | Upwelling and downwelling measured consecutively | Upwelling measure 4 feet from ground | |
11 | Correa & Ceballos 2008 [25] | UVB Biometers (501) × 2 1 inverted—“albedometer” | Sun | Broadband | Upwelling and downwelling irradiance measured concurrently | Brazil | Upwelling measure 0.4 m from ground |
12 | Webb et al., 2000 [42] | Spectroradiometer—Bifurcated optics (top and bottom of Cessna) | Sun | Spectral | Upwelling and downwelling irradiance measured concurrently | North-west coast England | Upwelling irradiance (0.5m from ground) Downwelling irradiance (1.1 m from ground) Air based ranging from 700 ft to 5500 ft |
13 | Castro et al., 2001 [24] | Eppley radiometer (Model 8-48) | Sun | Broadband | Downwelling to upwelling | Mexico City urban and rural | Height not stated |
14 | Lin et al., 2011 [31] | (B&W Tek, BRC112F) spectrometer | UVB lamps Philips TL20W/01 | Spectral converted to broadband | Reflectance reference from silicon standard | Laboratory | 0.1 m from surface |
15 | Parker et al., 2000 [33] | Beckman 5240 Spectrophotometer with integrating sphere | Solar exposure | Broadband | Reflected irradiance to incident irradiance (15°) | Florida, FL, USA | Not stated |
% Albedo ID | 1 | 2 | 3 | 4 & 9 | 5 | 6 | 7a | 7b | 8 & 9 | 10 | 11 | 12 | 13 | Min | Max | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface Type | ||||||||||||||||
Loam | 4.4 | - | - | 4.4 | ||||||||||||
Bare ground | 3.2 | 4–6 a | 3.9 | 3.2 | 6 | 4.3 | ||||||||||
Salt lake | 69 ± 2 | - | - | 69 | ||||||||||||
Sandy soil | 5.9 | 2–3 | 2 | 5.9 | 3.63 | |||||||||||
White sandy soil | 9.1 | 9.1 | ||||||||||||||
Sand (freshwater) | 8.9 | 9.1 | 15.2 | 15–30 b | 7.1 c | 7.1 | 30 | 14.22 | ||||||||
Beach sand (wet) | 7 | 2.4 d | 2.4 | 7 | 4.7 | |||||||||||
Beach sand (dry) | 15–18 | 15–18 | 4.2 e | 4.2 | 18 | 14.04 | ||||||||||
White clay | 12 | - | - | 12 | ||||||||||||
Primitive rock | 3.7 | - | - | 3.7 | ||||||||||||
Limestone | 11.2 | - | - | 11.2 | ||||||||||||
Flower bed | 2.6 | - | - | 2.6 | ||||||||||||
Mown grass | 1.8 f 1.2 g 1.4 h | 0.8–1.2 | 2.0–3.7 | 1.1 i 1.0 j | 0–1.6 | 1–5 | 0 | 3.7 | 1.75 | |||||||
Long grass | 0.5–1.0 | 1.3 | 1.7 | 0.5 | 1.7 | 1.07 | ||||||||||
Lawn | 1–3 | 2.4 | 3.7 | 1.1–1.4 | 1 | 3.7 | 2.1 | |||||||||
Alfalfa | 1.8 | - | - | 1.8 | ||||||||||||
Clover | 0.8 | - | - | 0.8 | ||||||||||||
Pasture | 4.9 | 0.8–1.6 | 0.8 | 4.9 | 2.43 | |||||||||||
Oats | 1.7 | - | - | 1.7 | ||||||||||||
Rye | 1.7 | - | - | 1.7 | ||||||||||||
Straw | 4.3 | - | - | 4.3 | ||||||||||||
Wheat | 1 | - | - | 1 | ||||||||||||
Lake side water | 3.2 | 4.8 | 2.7–3.9 | 2.7 | 4.8 | 3.65 | ||||||||||
River side water | 3 | - | - | 3 | ||||||||||||
Fresh water over gravel (0.5 m) | 1.8 | - | - | 1.8 | ||||||||||||
Surf | 20 | 25–30 | 25–30 | 20 | 30 | 26 | ||||||||||
Snow | 76.2 | 90 | 88 | 88 | 76.2 | 90 | 85.55 | |||||||||
Dirty snow | 59 | - | - | 59 | ||||||||||||
New dry snow | 94.4 | 85 | 85 | 94.4 | 89.7 | |||||||||||
New wet snow | 79.2 | - | - | 79.2 | ||||||||||||
Old dry snow | 82.2 | 50 | 50 | 82.2 | 66.1 | |||||||||||
Old wet snow | 74.4 | - | - | 74.4 | ||||||||||||
Most ground surfaces | >10 | - | - |
% Albedo ID | 1 | 3 | 4 & 9 | 5 | 6 | 7b | 8 & 9 | 10 | 11 | 12 | 13 | 14 | 15 | min | max | mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface Type | ||||||||||||||||
Concrete (new) | 15.8 | 9.8 | 10–12 | 14.6 | 9.8 | 15.2 | 12.44 | |||||||||
Concrete | 8.2 | 9.2 | 8–12 | 7.0–8.2 | 10–11 k | 9.7 | 7 | 12 | 9.26 | |||||||
Wet concrete | 8 | - | - | 8 | ||||||||||||
Concrete/pebble tile | 12.4 | - | - | 12.4 | ||||||||||||
White concrete tile | 22 | - | - | 22 | ||||||||||||
Ceramic tile—porcelain —stoneware —vitrified mosaic | 11.48 17.30 33.22 | - - - | - - - | 11.48 17.30 33.22 | ||||||||||||
Gravel path | 8.2 | 5.8 | 5.8 | 8.2 | 7 | |||||||||||
Asphalt | 5.5 | 5–9 black | 4.1–5.0 l 5.0–8.9 m | 2-7 | 4.2–9.2 | 2 | 9 | 5.90 | ||||||||
Tar sealed road | 6 | - | - | 6 | ||||||||||||
Tarmac road | 6.5 f 5.5 g 5.7 h | 9.8–15 n 9–9.8 o | 5.5 | 15 | 8.76 | |||||||||||
Tennis court | 2.9 | - | - | 2.9 | ||||||||||||
Wooden boards (dock) | 4.4 | 5-7 | 6.4 | 4.4 | 7 | 5.7 | ||||||||||
Natural clear wood | 2.6 | 5.2 | 2.6 | 5.2 | 3.9 | |||||||||||
White painted wood | 4.2 | - | - | 4.2 | ||||||||||||
Black painted wood | 2.7 | 6.5 | 2.7 | 6.5 | 24.6 | |||||||||||
Enamel paint (white/red) | 5.1 | - | - | 5.1 | ||||||||||||
Black butyl rubber roof | 5.1 | - | - | 5.1 | ||||||||||||
Stainless steel opaque plate | 4.3 | - | - | 4.3 | ||||||||||||
Steel plate—colour coating | 8.86 s–13.35 t | 8.86 | 13.35 | 11.11 | ||||||||||||
Shiny corrugated iron | 18.1 | 30 p (25– 32) q | 18.1 | 30 | 24.05 | |||||||||||
Pale pink corrugated iron | 3–12 p (3–6) q | - | - | 7.5 | ||||||||||||
White paint—metal oxide | 22 | 17.5 | 17.5 | 22 | 19.75 | |||||||||||
Aluminium-weathered | 13 | 75 r | 13 | 75 | 44 | |||||||||||
Unpainted galvanized tin | 29.3 | - | - | 29.3 | ||||||||||||
White fibre glass | 9.1 | - | - | 9.1 | ||||||||||||
White formica | 7.9 | - | - | 7.9 | ||||||||||||
Polycarbonate hollow sheet | 8.46 | - | - | 8.46 | ||||||||||||
Pottery wall tile | 12.35 | - | - | 12.35 | ||||||||||||
Red brick | 4.5–7 | 4.5 | 7 | 5.75 |
Berdahl & Bretz | Solar | UV | VIS | NIR | Parker et al. | Solar | UV | VIS | NIR |
---|---|---|---|---|---|---|---|---|---|
Asphalt Shingle Reflectance | Shingle Colour | ||||||||
black | 5 | 4 | 5 | 5 | Generic Black | 5 | 4.6 | 5.3 | 4.8 |
Onyx Black | 3.4 | 3.7 | 3.5 | 3.3 | |||||
white | 21 | 6 | 24 | 21 | Generic White | 25.3 | 9.9 | 27 | 25.2 |
Shasta White | 26.1 | 11.5 | 29.6 | 24.2 | |||||
ISP K-711 “white” | 31.1 | 12.2 | 34.4 | 29.9 | |||||
Generic Grey | 21.7 | 10.1 | 23.1 | 21.7 | |||||
gray | 8 | 6 | 8 | 9 | Ocean Gray | 11.7 | 7.2 | 12.3 | 11.5 |
antique silver | 20 | 6 | 22 | 19 | Aspen Gray | 17.8 | 8.9 | 19.5 | 17.2 |
saddle tan | 16 | 5 | 16 | 18 | Desert Tan | 12 | 4.3 | 11.3 | 13.5 |
light brown | 19 | 7 | 19 | 20 | Beachwood Sand | 20 | 7.5 | 20.5 | 20.8 |
medium light brown | 10 | 5 | 10 | 11 | Island Brown | 8.7 | 4.4 | 7.8 | 10 |
medium brown | 12 | 6 | 12 | 12 | Autumn Brown | 9.6 | 3.9 | 8.6 | 11.1 |
dark brown | 8 | 5 | 8 | 9 | Weathered Wood | 8.2 | 5.4 | 8.4 | 8.3 |
green | 19 | 8 | 21 | 20 | Surf Green | 15.7 | 9.1 | 16.2 | 16.1 |
Commercial roof coatings | |||||||||
Koolseal elastomeric | 81 | 14 | 88 | 81 | Kool Seal Elastomeric over shingle | 71.4 | 16.7 | 80 | 69.1 |
MCI elastomeric | 80 | 12 | 87 | 81 | Aged Elastomeric on plywood | 72.7 | 17.4 | 78.5 | 73.1 |
Flex-tec Elastomeric on shingle | 65 | 14.1 | 69.4 | 66.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, J.; Parisi, A.V. Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings. Int. J. Environ. Res. Public Health 2018, 15, 1507. https://doi.org/10.3390/ijerph15071507
Turner J, Parisi AV. Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings. International Journal of Environmental Research and Public Health. 2018; 15(7):1507. https://doi.org/10.3390/ijerph15071507
Chicago/Turabian StyleTurner, Joanna, and Alfio V. Parisi. 2018. "Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings" International Journal of Environmental Research and Public Health 15, no. 7: 1507. https://doi.org/10.3390/ijerph15071507
APA StyleTurner, J., & Parisi, A. V. (2018). Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings. International Journal of Environmental Research and Public Health, 15(7), 1507. https://doi.org/10.3390/ijerph15071507