Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science
Abstract
:1. Introduction
Citizen Science in Action
2. Methods
3. Results
3.1. Property-Scale Distribution of Soil Metals and Metal Sources
3.2. City-Scale Distribution of Soil Metals
4. Discussion
4.1. Anthropogenic Sources for Pb and Zn
4.2. Implications for Human Health
4.3. City-Wide Patterns in Anthropogenic Metal Distributions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellinger, D.C. The protean toxicities of lead: New chapters in a familiar story. Int. J. Environ. Res. Public Health. 2011, 8, 2593–2628. [Google Scholar] [CrossRef] [PubMed]
- Chambers, L.G.; Chin, Y.-P.; Filippelli, G.M.; Gardner, C.; Herndon, E.M.; Long, D.T.; Lyons, W.B.; Macpherson, G.L.; McElmurry, S.P.; McLean, C.E.; et al. Developing the scientific framework for urban geochemistry. Appl. Geochem. 2016, 67, 1–20. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Taylor, M.P. Addressing pollution-related global environmental health burdens. GeoHealth 2018, 2, 2–5. [Google Scholar] [CrossRef]
- Nevin, R. How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy. Environ. Res. 2000, 83, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Needleman, H.L.; McFarland, C.; Ness, R.B.; Fienberg, S.E.; Tobin, M.J. Bone lead levels in adjudicated delinquents: A case control study. Neurotoxicol. Teratol. 2002, 24, 711–717. [Google Scholar] [CrossRef]
- Needleman, H. Lead poisoning. Annu. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Nevin, R. Understanding international crime trends: The legacy of preschool lead exposure. Environ. Res. 2007, 104, 315–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevin, R. Trends in preschool lead exposure, mental retardation, and scholastic achievement: Association or causation? Environ. Res. 2009, 109, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielke, H.W.; Zahran, S. The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence. Environ. Int. 2012, 43, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.; Filippelli, G.M.; Sayegh, A. Cardiovascular-related outcomes in US adults exposed to lead. Int. J. Environ. Res. Public Health 2018, 15, 759. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.; Filippelli, G.M.; Sayegh, A. Hepatobiliary-related outcomes in US adults exposed to lead. Environments 2018, 5, 46. [Google Scholar] [CrossRef]
- Zahran, S.; Laidlaw, M.A.; McElmurry, S.P.; Filippelli, G.M.; Taylor, M. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013, 47, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.; Mielke, H.W.; McElmurry, S.P.; Filippelli, G.M.; Laidlaw, M.A.; Taylor, M.P. Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int. 2013, 60, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, G.M.; Risch, M.; Laidlaw, M.A.S.; Nichols, D.E.; Crewe, J. Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils. Elementa 2015, 3, 000059. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, M.A.S.; Filippelli, G.M.; Brown, S.; Paz-Ferreiro, J.; Reichman, S.; Netherway, P.; Truskewycz, A.; Ball, A.; Mielke, H. Case studies and evidence-based approaches to addressing urban soil lead contamination. Appl. Geochem. 2017, 83, 14–30. [Google Scholar] [CrossRef]
- Pandit, C.; Filippelli, G.M.; Li, L. An estimation of heavy metal concentration in soils using reflectance spectroscopy and partial least squares regression. Int. J. Remote Sens. 2010, 31, 4111–4123. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Laidlaw, M.; Raftis, R.; Latimer, J.C. Urban lead poisoning and medical geology: An unfinished story. GSA Today 2005, 15, 4–11. [Google Scholar] [CrossRef]
- Laidlaw, M.; Mielke, H.W.; Filippelli, G.M.; Johnson, D.; Gonzales, C.R. Seasonality and children’s blood lead levels: Developing a predictive model using climatic variables and blood lead data from three US cities. Environ. Health Perspect. 2005, 113, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Leech, T.G.J.; Adams, E.; Weathers, T.; Staten, L.; Filippelli, G.M. Inequitable chronic lead exposure: A dual legacy of social and environmental injustice. Fam. Community Health 2016, 39, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, G.M.; Laidlaw, M.A.S. The elephant in the playground: Confronting lead-contaminated soils as an important source of lead burdens to urban populations. Perspect. Biol. Med. 2010, 53, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Gonzales, C.R.; Smith, M.K.; Mielke, P.W. The urban environment and Children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ. Res. Sect. A 1999, 81, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.F.; Hausladen, D.M.; Brabander, D.J. Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design. Environ. Res. 2008, 107, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.; Filippelli, G.M. Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Appl. Geochem. 2008, 23, 2021–2039. [Google Scholar] [CrossRef]
- Laidlaw, M.A.S.; Zahran, S.; Mielke, H.W.; Taylor, M.P.; Filippelli, G.M. Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit, and Pittsburgh, USA. Atmos. Environ. 2012, 49, 302–310. [Google Scholar] [CrossRef]
- Laidlaw, M.A.S.; Filippelli, G.M.; Sadler, R.C.; Gonzales, C.R.; Ball, A.S.; Mielke, H.W. Children’s blood lead seasonality in Flint, Michigan (USA), and soil-sourced lead hazard risks. Int. J. Environ. Res. Public Health 2016, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Reuters. 2018. Available online: https://www.reuters.com/investigates/graphics/lead-water/en/ (accessed on 10 June 2018).
- Rouillon, M.P.; Harvey, P.J.; Kristensen, L.J.; George, S.G.; Taylor, M. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening. Environ. Pollut. 2017, 222, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.B.; Cannon, W.F.; Woodruff, L.G.; Solano, F.; Ellefsen, K.J. Geochemical and Mineralogic Maps of Soils of the Conterminous United States; USGS Open-File Report 2014-1082; USGS: Reston, VA, USA, 2014.
- Datko-Williams, L.; Wilkie, A.; Richmond-Bryant, J. Analysis of US soil lead (Pb) studies from 1970 to 2012. Sci. Total Environ. 2014, 468–469, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.J.; Rouillon, M.; Dong, C.; Ettler, V.; Handley, H.K.; Taylor, M.P.; Tyson, E.; Tennant, P.; Telfer, V.; Trinh, R. Geochemical sources, forms and phases of soil contamination in an industrial city. Sci. Total Environ. 2017, 584, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Callendar, E.; Rice, K.C. The urban environmental gradient: Anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ. Sci. Technol. 2000, 34, 232–238. [Google Scholar] [CrossRef]
- U.S. EPA. Lead Regulations. Available online: http://www.epa.gov/lead/lead-regulations (accessed on 11 February 2016).
- Hunt, A.; Johnson, D.L. Suspension and re-suspension of dry soil indoors following track-in on footwear. Environ. Geochem. Health 2012, 34, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Johnson, D.L.; Griffith, D.A. Mass transfer of soil indoors by track-in on footwear. Sci. Total Environ. 2006, 370, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R. Urban gardening: Managing the risks of contaminated soil. Environ. Health Perspect. 2013, 121, A327–A333. [Google Scholar] [CrossRef] [PubMed]
- Attanayake, C.P.; Hettiarachchi, G.M.; Martin, S.; Pierzynski, G.M. Potential bioavailability of lead, arsenic, and polycyclic aromatic hydrocarbons in compost-amended urban soils. J. Environ. Qual. 2015, 44, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Chaney, R.L.; Hettiarachchi, G.M. Lead in urban soils: A real or perceived concern for urban agriculture? J. Environ. Qual. 2016, 45, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Mielke, H.W.; Covington, T.P.; Mielke, P.W.; Wolman, F.J.; Powell, E.T.; Gonzales, C.R. Soil intervention as a strategy for lead exposure prevention: The New Orleans lead-safe childcare playground project. Environ. Pollut. 2011, 159, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.A. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. J. Environ. Manag. 2013, 118, 72–95. [Google Scholar] [CrossRef] [PubMed]
Location of Samples | Drip | Yard | Street | Enrichment | U.S. Mean * |
---|---|---|---|---|---|
187 | 976 | 192 | (ppm) | ||
Pb | |||||
Mean | 805 | 345 | 240 | 2.33 | 18 |
Median | 282 | 193 | 143 | ||
Max | 8816 | 6619 | 2654 | ||
Mn | |||||
Mean | 635 | 695 | 646 | 0.98 | 492 |
Median | 603 | 666 | 616 | ||
Max | 1359 | 2597 | 1358 | ||
Ba | |||||
Mean | 147 | 132 | 118 | 1.25 | 510 |
Median | 124 | 116 | 104 | ||
Max | 1100 | 1200 | 969 | ||
Cr | |||||
Mean | 23 | 22 | 20 | 1.15 | 30 |
Median | 20 | 19 | 19 | ||
Max | 249 | 1183 | 79 | ||
Cu | |||||
Mean | 41 | 28 | 29 | 1.46 | 14 |
Median | 21 | 18 | 16 | ||
Max | 1469 | 1332 | 888 | ||
Zn | |||||
Mean | 575 | 312 | 262 | 2.19 | 58 |
Median | 313 | 216 | 149 | ||
Max | 3814 | 3660 | 3892 |
Zipcode | Value | Pb | Zn |
---|---|---|---|
ppm | ppm | ||
Center Township | |||
46218 | mean | 373 | 323 |
median | 216 | 236 | |
46222 | mean | 471 | 374 |
median | 257 | 292 | |
46201 | mean | 401 | 340 |
median | 261 | 246 | |
46202 | mean | 666 | 468 |
median | 376 | 293 | |
46203 | mean | 495 | 421 |
median | 279 | 289 | |
46208 | mean | 263 | 340 |
median | 183 | 247 | |
46205 | mean | 388 | 365 |
median | 263 | 285 | |
Outside Center Township | |||
46219 | mean | 157 | 244 |
median | 123 | 204 | |
46220 | mean | 175 | 239 |
median | 110 | 156 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippelli, G.M.; Adamic, J.; Nichols, D.; Shukle, J.; Frix, E. Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science. Int. J. Environ. Res. Public Health 2018, 15, 1531. https://doi.org/10.3390/ijerph15071531
Filippelli GM, Adamic J, Nichols D, Shukle J, Frix E. Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science. International Journal of Environmental Research and Public Health. 2018; 15(7):1531. https://doi.org/10.3390/ijerph15071531
Chicago/Turabian StyleFilippelli, Gabriel M., Jessica Adamic, Deborah Nichols, John Shukle, and Emeline Frix. 2018. "Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science" International Journal of Environmental Research and Public Health 15, no. 7: 1531. https://doi.org/10.3390/ijerph15071531
APA StyleFilippelli, G. M., Adamic, J., Nichols, D., Shukle, J., & Frix, E. (2018). Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science. International Journal of Environmental Research and Public Health, 15(7), 1531. https://doi.org/10.3390/ijerph15071531