Quantitative Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Comparison of Prochloraz Residue on Garlic Sprouts after Soaking and Spraying Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Postharvest Treatment and Storage
2.3. Sample Preparation
2.3.1. Sample Extraction
2.3.2. Purification
2.3.3. Method Validation
2.4. UPLC-MS/MS Conditions
3. Results and Discussion
3.1. Limit of Detection and LOQ
3.2. Linearity
3.3. Recovery Study
3.4. Actual Sample
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wei, Q.; Zhang, N.; Zhang, P.; Li, M.G.; Yan, R.X. Timeliness of four bacillus strains against botrytis cinerea of garlic sprouts. Biotechnol. Bull. 2017, 33, 112–120. [Google Scholar]
- Gdula Argasińska, J.; Paśko, P.; Sułkowska Ziaja, K.; Kała, K.; Muszyńska, B. Anti-inflammatory activities of garlic sprouts, a source of α-linolenic acid and 5-hydroxy-l-tryptophan, in raw 264.7 cells. Acta Biochim. Pol. 2017, 64, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol. 2016, 52, 49–56. [Google Scholar] [CrossRef]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagai, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agri. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Ide, N.; Ono, K. Changes in organosulfur compounds in garlic cloves during storage. J. Agric. Food Chem. 2006, 54, 4849–4854. [Google Scholar] [CrossRef] [PubMed]
- Bayat, F.; Rezvani, S. Effect of harvesting time and moisture on mechanical properties of garlic (Allium sativum L.) skin. Agric. Eng. Int. 2012, 14, 161–167. [Google Scholar]
- Iliev, A.I.; Ludneva, D.P.; Kalchevakaradzhova, K.D.; Kozarekovayovkova, D.T. Antioxidant activity and polyphenol content in garlic after drying and unsealed storage. In Proceedings of the International Scientific-Practical Conference, Food, Technologies and Health, Plovdiv, Bulgaria, 7–8 November 2013. [Google Scholar]
- Qin, L. Study of no on the preservation of garlic sprouts. Tianjin Agric. Sci. 2010, 16, 57–60. [Google Scholar]
- Gebreyohannes, G.; Gebreyohannes, M. Medicinal values of garlic: A review. Int. J. Med. Med. Sci. 2013, 9, 401–408. [Google Scholar]
- Zhou, X.; Mu, W.; Wang, Q. Effects of three plant extracts on quality of garlic stem during shelf life. J. Agric. 2012, 1, 48–52. [Google Scholar]
- Rejano, L.; Sanchez, A.H.; Ade, C.; Montano, A. Chemical characteristics and storage stability of pickled garlic prepared using different processes. J. Food Sci. 2012, 62, 1120–1123. [Google Scholar] [CrossRef]
- Masood, S.B.; Muhammad, T.S.; Mehmood, S.B.; Javaid, I. Garlic: Nature’s protection against physiological threats. Crit. Rev. Food Sci. 2009, 49, 538–551. [Google Scholar]
- Yu, M.; Wang, J.; Duan, W.Z.; Ai, L.F.; Ma, Y.S.; Li, W. Determination of 86 pesticide residues in sulfur-containing vegetables by GC-NCI/MS. Food Ind. 2016, 37, 246–252. [Google Scholar]
- Besil, N.; Pérez−Parada, A.; Cesio, V.; Varela, P.; Rivas, F.; Heinzen, H. Degradation of imazalil, orthophenylphenol and pyrimethanil in clementine mandarins under conventional postharvest industrial conditions at 4 °C. Food Chem. 2016, 194, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Luo, T.; Xu, R.W.; Cheng, Y. Dynamic analyses of prochloraz and imazalil residues in citrus during fruit storage. J. Huazhong Agric. Univ. 2016, 35, 17–23. [Google Scholar]
- Yuan, X.Y.; Peng, Z.; Zhou, H.P.; Liu, C. Degradation dynamics and safety evaluation of prochloraz in banana. J. Food Saf. Qual. 2016, 7, 209–214. [Google Scholar]
- Nielsen, F.K.; Hansen, C.H.; Fey, J.A.; Hansen, M.; Halling-Sørensen, B.; Bjorklund, E.; Styrishave, B. Mixture effects of 3 mechanistically different steroidogenic disruptors (prochloraz, genistein, and ketoconazole) in the H295R cell assay. Int. J. Toxicol. 2015, 279, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.D.S.; Filho, A.T. Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions. Br. J. Pharm. Sci. 2010, 46, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Yao, G.; Shi, Y.; Ding, C.; Wang, Y.; Wu, X.; Hua, R.; Cao, H. Residue dynamics and risk assessment of prochloraz and its metabolite 2, 4, 6-trichlorophenol in apple. Molecules 2017, 22, 1780. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, M.F.; Catal, M.; Erler, F.; Bilgin, A.K. Rapid and sensitive determination of the prochloraz residues in the cultivated mushroom, Agaricus bisporus (Lange) Imbach. Anal. Methods 2014, 6, 1970–1976. [Google Scholar] [CrossRef]
- Besil, N.; Cesio, V.; Heinzen, H.; Fernándezalba, A.R. Matrix effects and interferences of different citrus fruits co-extractives in pesticide residue analysis using ultra high-performance liquid chromatography-high resolution mass spectrometry. J. Agric. Food Chem. 2017, 65, 4819–4829. [Google Scholar] [CrossRef] [PubMed]
- Lara-Ortega, F.J.; Robles-Molina, J.; Brandt, S.; Schütz, A.; Gilbert-López, B.; Molina-Día, A.; García-Reyes, J.F.; Franzke, J. Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Anal. Chim. Acta 2018, 1020, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Wu, Y.C.; Liu, Q.Q.; Shi, Y.H.; Zhou, L.J.; Liu, Z.Y.; Yu, L.S.; Cao, H.Q. Multi-Residue analysis of pesticide residues in crude pollens by UPLC-MS/MS. Molecules 2016, 21, 1652. [Google Scholar] [CrossRef] [PubMed]
- Winther, C.S.; Nielsen, F.K.; Hansen, M.; Styrishave, B. Corticosteroid production in h295r cells during exposure to 3 endocrine disrupters analyzed with lc-ms/ms. Int. J. Toxicol. 2013, 32, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Erney, D.R.; Gillespie, A.M.; Gilvydis, D.M.; Poole, C.F. Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. A 1993, 638, 57–63. [Google Scholar] [CrossRef]
- Erney, D.R.; Pawlowski, T.M.; Poole, C.F. Matrix-Induced peak enhancement of pesticides in gas chromatogrtaphy: Is there a solution? J. Sep. Sci. 2015, 20, 375–378. [Google Scholar] [CrossRef]
Compound | Transitions | Dwell Time (s) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
Prochloraz | Quantification ion: 376 > 308 | 0.008 | 20 | 15 |
Confirmation ion: 376 > 266 | 20 | 15 |
Pesticide | ME (%) | tR (min) | Linear Range (μg/kg) | Linear Regression Equation | Linearity |
---|---|---|---|---|---|
Prochloraz | 5.8 | 2.20 | 5–500 | Y = 0.9898X − 1.2624 | 0.9983 |
Pesticide | LOD (μg/kg) | LOQ (μg/kg) | Concentration (μg/kg) | Measured ± SD (μg/kg) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|
Prochloraz | 0.0166 | 0.0499 | 5 | 4.7 ± 0.46 | 94.8 | 9.7 |
50 | 44.2 ± 1.26 | 88.4 | 2.8 | |||
500 | 447.1 ± 11.69 | 89.4 | 2.6 |
Sampling City | Sampling Time | Soaking (mg/kg) | Spraying (mg/kg) | ||
---|---|---|---|---|---|
Whole Plant (Measured ± SD) | Stems (Measured ± SD) | Whole Plant (Measured ± SD) | Stems (Measured ± SD) | ||
Pingdu | 1 June | 25.14 ± 1.20 | 1.12 ± 0.07 | 5.93 ± 0.36 | 1.11 ± 0.06 |
29 June | 22.72 ± 0.94 | 0.80 ± 0.03 | 2.23 ± 0.18 | 0.12 ± 0.01 | |
30 July | 21.86 ± 1.13 | 0.58 ± 0.04 | 1.85 ± 0.12 | 0.01 ± 0.001 | |
Laixi | 1 June | 20.12 ± 0.86 | 1.62 ± 0.05 | 7.89 ± 0.54 | 1.29 ± 0.09 |
29 June | 18.70 ± 0.42 | 1.13 ± 0.09 | 5.04 ± 0.30 | 0.15 ± 0.01 | |
30 July | 15.76 ± 1.06 | 1.04 ± 0.06 | 4.08 ± 0.20 | 0.03 ± 0.003 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Q.; Ding, C.; Dong, Z.; Guan, S.; Wu, R.; Wu, X.; Hua, R.; Cao, H. Quantitative Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Comparison of Prochloraz Residue on Garlic Sprouts after Soaking and Spraying Treatment. Int. J. Environ. Res. Public Health 2018, 15, 1552. https://doi.org/10.3390/ijerph15071552
Fang Q, Ding C, Dong Z, Guan S, Wu R, Wu X, Hua R, Cao H. Quantitative Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Comparison of Prochloraz Residue on Garlic Sprouts after Soaking and Spraying Treatment. International Journal of Environmental Research and Public Health. 2018; 15(7):1552. https://doi.org/10.3390/ijerph15071552
Chicago/Turabian StyleFang, Qingkui, Chenchun Ding, Zhan Dong, Shuai Guan, Ruifeng Wu, Xiangwei Wu, Rimao Hua, and Haiqun Cao. 2018. "Quantitative Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Comparison of Prochloraz Residue on Garlic Sprouts after Soaking and Spraying Treatment" International Journal of Environmental Research and Public Health 15, no. 7: 1552. https://doi.org/10.3390/ijerph15071552
APA StyleFang, Q., Ding, C., Dong, Z., Guan, S., Wu, R., Wu, X., Hua, R., & Cao, H. (2018). Quantitative Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for Comparison of Prochloraz Residue on Garlic Sprouts after Soaking and Spraying Treatment. International Journal of Environmental Research and Public Health, 15(7), 1552. https://doi.org/10.3390/ijerph15071552