Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Field Experiments
2.3. Sample Preparation
2.4. Instrumentation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Dissipation of Oxadiargyl in Field Trials
3.3. Final Residues of Oxadiargyl in Field Trials
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kaur, P.; Kaur, P.; Bhullar, M.S. Persistence behaviour of pretilachlor in puddled paddy fields under subtropical humid climate. Environ. Monit. Assess. 2015, 187, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tornos, L.; Huesca, M.; Dominguez, J.A.; Moyano, M.C.; Cicuendez, V.; Recuero, L.; Palacios-Oruetad, A. Assessment of MODIS spectral indices for determining rice paddy agricultural practices and hydroperiod. ISPRS J. Photogramm. Remote Sens. 2015, 101, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Fried, G.; Chauvel, B.; Reynaud, P.; Sache, I. Decreases in crop production by non-native weeds, pests, and pathogens. In Impact of Biological Invasions on Ecosystem Services; Vilà, M., Hulme, P.E., Eds.; Springer: Cham, Switzerland, 2017; pp. 83–101. ISBN 978-3-319-45119-0. [Google Scholar]
- Sekhotha, M.M.; Monyeki, K.D.; Sibuyi, M.E. Exposure to agrochemicals and cardiovascular disease: A review. Int. J. Environ. Res. Public Health 2016, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.C.; Noldin, J.A.; Deschamps, F.C.; Resgalla, C., Jr. Ecological risk analysis of pesticides used on irrigated rice crops in southern Brazil. Chemosphere 2016, 162, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C. Agrochemical lead optimization by scaffold hopping. Pest Manag. Sci. 2018, 74, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, N.; Alam, S.; Pradhan, S.; Banerjee, K.; Chowdhury, A.; Aktar, M.W. Metabolism and dissipation kinetics of a novel protoporphyrinogen IX oxidase herbicide [oxadiargyl] in various buffered aqueous system under laboratory-simulated condition. Environ. Monit. Assess. 2015, 187, 433. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Chauhan, B.S. Efficacy and phytotoxicity of different rates of oxadiargyl and pendimethalin in dry-seeded rice (Oryza sativa L.) in Bangladesh. Crop Prot. 2015, 72, 169–174. [Google Scholar] [CrossRef]
- Jiang, L.L.; Tan, Y.; Zhu, X.L.; Wang, Z.F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.H. Design, synthesis, and 3D-QSAR analysis of novel 1,3,4-oxadiazol-2(3H)-ones as protoporphyrinogen oxidase inhibitors. J. Agric. Food Chem. 2010, 58, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.W.; Wang, J.; Di Tommaso, A.; Zhang, C.X.; Zheng, G.P.; Liang, W.; Faisal, I.; Yang, C.; Chen, X.X.; Zhou, W.J. Weed research status, challenges, and opportunities in China. Crop Prot. 2018. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Rahnemaie, R.; Soufizadeh, S.; Malakouti, M.J.; Eshaghi, A. Residual effect of thiobencarb and oxadiargyl on spinach and lettuce in rotation with rice. J. Agric. Sci. Technol. 2011, 13, 785–794. [Google Scholar]
- Khaliq, A.; Matloob, A. Germination and growth response of rice and weeds to herbicides under aerobic conditions. Int. J. Agric. Biol. 2012, 14, 775–780. [Google Scholar]
- Nethra, N.S.; Jagannath, S. Phytotoxic effect of oxadiargyl on germination and early growth of sunflower (Helianthus annuus L.) and maize (Zea mays L.). Arch. Phytopathol. Plant Prot. 2011, 44, 1901–1907. [Google Scholar] [CrossRef]
- EU legislation on MRLs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELE X:32015R1040 (accessed on 14 July 2018).
- The Japan Food Chemical Research Foundation. Available online: http://db.ffcr.or.jp/front/pesticide_detail?id=13050 (accessed on 28 May 2018).
- China Pesticide Information Network. Available online: http://202.127.42.84/tbt-sps/mrlsdb/queryMrlsdb.do (accessed on 28 May 2018).
- Chen, P.; Mai, M.; You, Y.Z. The study about residual determination of oxadiargyl on the rice field. Pesticide 1999, 38, 20–21. [Google Scholar]
- Bagheri, H.; Zandi, O.; Aghakhani, A. Magnetic nanoparticle-based micro-solid phase extraction and GC−MS determination of oxadiargyl in aqueous samples. Chromatographia 2011, 74, 483–488. [Google Scholar] [CrossRef]
- Shi, C.H.; Gui, W.J.; Chen, J.; Zhu, G.N. Determination of oxadiargyl residues in environmental samples and rice samples. Bull. Environ. Contam. Toxicol. 2010, 84, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumari, B.; Punia, S.S. High-performance liquid chromatographic method for estimation of oxadiargyl residues in paddy grains, straw and soil. Ann. Biol. 2007, 23, 33–36. [Google Scholar]
- Min, Z.W.; Hong, S.M.; Yang, I.C.; Kwon, H.Y.; Kim, T.K.; Kim, D.H. Analysis of pesticide residues in brown rice using modified QuEChERS multiresidue method combined with electrospray ionization-liquid chromatography−tandem mass spectrometric detection. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 769–775. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Rahnemaie, R.; Es-haghi, A.; Malakouti, M.J. Kinetics of degradation and adsorption-desorption isotherms of thiobencarb and oxadiargyl in calcareous paddy fields. Chemosphere 2013, 91, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [PubMed]
- Anastassiades, M.; Maštovská, K.; Lehotay, S.J. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J. Chromatogr. A 2003, 1015, 163–184. [Google Scholar] [CrossRef]
- Es-haghi, A.; Baghernejad, M.; Bagheri, H. Novel unbreakable solid-phase microextraction fibers on stainless steel wire and application for the determination of oxadiargyl in environmental and agricultural samples in combination with gas chromatography−mass spectrometry. Talanta 2014, 128, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Pszczolińska, K. The QuEChERS approach for the determination of pesticide residues in soil samples: An overview. J. AOAC Int. 2016, 99, 1403–1414. [Google Scholar]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Afify, A.E.M.R.; Attallah, E.R.; El-Gammal, H.A. A modified multi-residue method for analysis of 150 pesticide residues in green beans using liquid chromatography−tandem mass spectrometry. Adv. Food Sci. 2012, 34, 24–35. [Google Scholar]
- Su, Y.; Li, F.; Yu, J.J.; Li, Y.M.; Lei, H.Q.; Luo, Q. Determination of triclopyricarb and oxadiargyl residues in vegetative foods by QuEChERS-HPLC-tandem mass spectrometry. Chin. J. Chromatogr. 2016, 34, 577–582. [Google Scholar] [CrossRef]
- Afify, A.E.M.R.; Mohamed, M.A.; El-Gammal, H.A.; Attallah, E.R. Multiresidue method of analysis for determination of 150 pesticides in grapes using quick and easy method (QuEChERS) and LC-MS/MS determination. J. Food Agric. Environ. 2010, 8, 602–606. [Google Scholar]
- Zhang, Z.; Feng, M.; Zhu, K.; Han, L.; Sapozhnikova, Y.; Lehotay, S.J. Multiresidue analysis of pesticides in straw roughage by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2016, 64, 6091–6099. [Google Scholar] [CrossRef] [PubMed]
- European Commission Directorate General for Health and Food Safety, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed (SANTE/11813/2017). Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 6 August 2018).
- Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Ionic liquids with herbicidal anions. Tetrahedron 2011, 67, 4838–4844. [Google Scholar] [CrossRef]
- Hough, W.L.; Smiglak, M.; Rodriguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The third evolution of ionic liquids: Active pharmaceutical ingredients. New J. Chem. 2007, 31, 1429–1436. [Google Scholar] [CrossRef]
- Pernak, J.; Syguda, A.; Materna, K.; Janus, E.; Kardasz, P.; Praczyk, T. 2,4-D based herbicidal ionic liquids. Tetrahedron 2012, 68, 4267–4273. [Google Scholar] [CrossRef]
- Pernak, J.; Niemczak, M.; Giszter, R.; Shamshina, J.L.; Gurau, G.; Cojocaru, O.A.; Praczyk, T.; Marcinkowska, K.; Rogers, R.D. Glyphosate−based herbicidal ionic liquids with increased efficacy. ACS Sustain. Chem. Eng. 2014, 2, 2845–2851. [Google Scholar] [CrossRef]
- Ding, G.L.; Liu, Y.; Wang, B.T.; Punyapitak, D.; Guo, M.C.; Duan, Y.H.; Li, J.Q.; Cao, Y.S. Preparation and characterization of fomesafen ionic liquids for reducing the risk to the aquatic environment. New J. Chem. 2014, 38, 5590–5596. [Google Scholar] [CrossRef]
- Wang, B.T.; Ding, G.L.; Zhu, J.L.; Zhang, W.B.; Guo, M.C.; Geng, Q.Q.; Guo, D.; Cao, Y.S. Development of novel ionic liquids based on bentazone. Tetrahedron 2015, 71, 7860–7864. [Google Scholar] [CrossRef]
- Pernak, J.; Niemczak, M.; Shamshina, J.L.; Gurau, G.; Glowacki, G.; Praczyk, T.; Marcinkowska, K.; Rogers, R.D. Metsulfuron-methyl based herbicidal ionic liquids. J. Agric. Food Chem. 2015, 63, 3357–3366. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Wang, B.T.; Ding, G.L.; Zhang, W.B.; Liang, Y.; Fan, C.; Dong, H.Q.; Yang, J.L.; Kong, D.D.; Cao, Y.S. Developing ionic liquid forms of picloram with reduced negative effects on the aquatic environment. Sci. Total Environ. 2018, 616–617, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Pernak, J.; Czerniak, K.; Niemczak, M.; Chrzanowski, Ł.; Ławniczak, Ł.; Fochtman, P.; Marcinkowska, K.; Praczyk, T. Herbicidal ionic liquids based on esterquats. New J. Chem. 2015, 39, 5715–5724. [Google Scholar] [CrossRef]
- Kordala−Markiewicz, R.; Rodak, H.; Markiewicz, B.; Walkiewicz, F.; Sznajdrowska, A.; Materna, K.; Marcinkowska, K.; Praczyk, T.; Pernak, J. Phenoxy herbicidal ammonium ionic liquids. Tetrahedron 2014, 70, 4784–4789. [Google Scholar] [CrossRef]
- Pernak, J.; Niemczak, M.; Materna, K.; Żelechowski, K.; Marcinkowska, K.; Praczyk, T. Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylpheno xy)butanoate anion. RSC Adv. 2016, 6, 7330–7338. [Google Scholar] [CrossRef]
Matrix | Linear Equation | Correlation Coefficient | ME |
---|---|---|---|
Paddy water | y = 913.90x + 1757.7 | 0.9999 | 1.0430 |
Paddy soil | y = 837.03x + 3184.3 | 0.9992 | 0.9550 |
Rice straw | y = 727.37x + 2234.9 | 0.9979 | 0.8300 |
Paddy hull | y = 755.67x − 5933.9 | 0.9987 | 0.8623 |
Brown rice | y = 834.12x + 1753.2 | 0.9997 | 0.9518 |
Compound | tR (min) | Precursor Ion (m/z) | Product Ion (m/z) | RF Lens (V) | Collison Energy (V) |
---|---|---|---|---|---|
Oxadiargyl | 4.10 | 341.07 | 222.89 | 139 | 16 |
4.10 | 341.07 | 150.93 | 139 | 26 |
Matrix | Fortified Level (μg kg−1) | Average Recovery (%) | RSD (%) | LOQ | LOD |
---|---|---|---|---|---|
(μg kg−1) | (μg kg−1) | ||||
Paddy water | 20 | 80.4 | 4.3 | 20 | 6 |
200 | 90.1 | 3.5 | |||
2000 | 98.8 | 3.8 | |||
Paddy soil | 20 | 96.5 | 6.1 | 20 | 6 |
200 | 88.2 | 7.6 | |||
2000 | 95.9 | 4.0 | |||
Rice straw | 20 | 84.2 | 14.0 | 20 | 6 |
200 | 91.2 | 11.2 | |||
2000 | 89.6 | 8.5 | |||
Paddy hull | 20 | 76.0 | 6.5 | 20 | 6 |
200 | 86.1 | 6.0 | |||
2000 | 77.1 | 6.7 | |||
Brown rice | 20 | 85.5 | 8.7 | 20 | 6 |
200 | 92.8 | 5.8 | |||
2000 | 93.8 | 7.1 |
Location | Year | Kinetic Equation 1 | R2 | t1/2 (days) | pH Value |
---|---|---|---|---|---|
Hunan | 2015 | C = 0.1945e−0.109t | 0.9226 | 6.4 | 6.8 |
2016 | C = 0.1632e−0.103t | 0.9588 | 6.7 | ||
Heilongjiang | 2015 | C = 0.4284e−0.154t | 0.9067 | 4.5 | 8.2 |
2016 | C = 0.3668e−0.138t | 0.9662 | 5.0 | ||
Anhui | 2015 | C = 0.3553e−0.091t | 0.9627 | 7.6 | 5.9 |
2016 | C = 0.4117e−0.094t | 0.8983 | 7.4 |
Matrix | Year | Dosage (g a.i. ha−1) | Residue (μg kg−1) | ||
---|---|---|---|---|---|
Hunan | Heilongjiang | Anhui | |||
Paddy water | 2015 | 84 | <LOQ | <LOQ | <LOQ |
2016 | 126 | <LOQ | <LOQ | <LOQ | |
Paddy soil | 2015 | 84 | <LOQ | <LOQ | <LOQ |
2016 | 126 | <LOQ | <LOQ | <LOQ | |
Rice straw | 2015 | 84 | <LOQ | <LOQ | <LOQ |
2016 | 126 | <LOQ | <LOQ | <LOQ | |
Paddy hull | 2015 | 84 | <LOQ | <LOQ | <LOQ |
2016 | 126 | <LOQ | <LOQ | <LOQ | |
Brown rice | 2015 | 84 | <LOQ | <LOQ | <LOQ |
2016 | 126 | <LOQ | <LOQ | <LOQ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Zhou, Y.; Zheng, W.; Bai, L.; Zhou, X. Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method. Int. J. Environ. Res. Public Health 2018, 15, 1680. https://doi.org/10.3390/ijerph15081680
Deng X, Zhou Y, Zheng W, Bai L, Zhou X. Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method. International Journal of Environmental Research and Public Health. 2018; 15(8):1680. https://doi.org/10.3390/ijerph15081680
Chicago/Turabian StyleDeng, Xile, Yong Zhou, Wenna Zheng, Lianyang Bai, and Xiaomao Zhou. 2018. "Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method" International Journal of Environmental Research and Public Health 15, no. 8: 1680. https://doi.org/10.3390/ijerph15081680
APA StyleDeng, X., Zhou, Y., Zheng, W., Bai, L., & Zhou, X. (2018). Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method. International Journal of Environmental Research and Public Health, 15(8), 1680. https://doi.org/10.3390/ijerph15081680