A Framework of Industrialized Building Assessment in China Based on the Structural Equation Model
Abstract
:1. Introduction
- (1)
- To establish the framework of IBA, which should include dimensions such as efficiency, economic factors, livability, safety, environmental factors, and social benefits;
- (2)
- To assess the validity of the framework through data collected by assessing estimates of the framework and overall goodness of fit indices; and
- (3)
- To test the positive impact among efficiency and the supplementary five dimensions (economic factors, livability, safety, environmental factors, and social benefits).
2. Literature Review
2.1. Efficiency
2.2. Economic Factors
2.3. Structural Capacity
2.4. Livability
2.5. Safety
2.6. Environmental Factors
2.7. Social Benefits
3. Conceptual Framework and Theoretical Hypothesis
4. Methodology
4.1. Literature Review
4.2. Conceptual Framework
4.3. Questionnaire Design
4.4. Questionnaire Survey
4.5. Data Collection
5. Data Analysis
5.1. Reliability Analysis
5.2. Validity Analysis
5.3. Confirmatory Factor Analysis (CFA)
5.4. Correlation Analysis and Discriminate Validity
5.5. Structural Equation Model (SEM)
6. Discussion
7. Conclusions
- (1)
- The conceptual framework of IBA was constructed, which includes the following six dimensions: efficiency, economic factors, livability, safe, environmental factors, and social benefits. Additionally, it has 23 indicators in the above six dimensions.
- (2)
- IB efficiency showed positive effect on the economic factors, livability, safety, environmental factors, and social benefits. Thus, efficiency is the main point of consideration in IBA.
Author Contributions
Funding
Conflicts of Interest
Appendix A. Questionnaire
□ 18–29 | □ 30–39 | □ 40–49 | □ 50–59 | □ > 60 |
□ Designers | □ Developers | □ Engineers | □ Contractors | □ Component suppliers | □ Property managers |
□ 1–49 | □ 50–99 | □ 100–199 | □ 200–299 | □ 300–399 | □ 400–499 | □ >500 |
□ 1–5 years | □ 6–10 years | □ 10–15 years | □ 16–20 years | □ 21–25 years | □ 26–30 years | □ >30 years |
Efficiency | |||||
VA1. Integrated design | 1 | 2 | 3 | 4 | 5 |
VA2. Integrated construction | 1 | 2 | 3 | 4 | 5 |
VA3. Integrated management | 1 | 2 | 3 | 4 | 5 |
VA4. Construction schedule | 1 | 2 | 3 | 4 | 5 |
Economic factors | |||||
VB1. On-site construction cost | 1 | 2 | 3 | 4 | 5 |
VB2. Operating and maintenance costs | 1 | 2 | 3 | 4 | 5 |
VB3. Management cost | 1 | 2 | 3 | 4 | 5 |
VB4. Prefabrication and transportation cost | 1 | 2 | 3 | 4 | 5 |
VB5. Consumption of building materials, energy and resources | 1 | 2 | 3 | 4 | 5 |
Livability | |||||
VC1. Durability of building | 1 | 2 | 3 | 4 | 5 |
VC2. Safety of building | 1 | 2 | 3 | 4 | 5 |
VC3. Adaptability of building | 1 | 2 | 3 | 4 | 5 |
VC4. Quality level of the building | 1 | 2 | 3 | 4 | 5 |
Safety | |||||
VD1. Safety of employees | 1 | 2 | 3 | 4 | 5 |
VD2. Health of employees | 1 | 2 | 3 | 4 | 5 |
VD3. Possibility of accidents in construction | 1 | 2 | 3 | 4 | 5 |
Environmental factors | |||||
VE1. Waste reduction | 1 | 2 | 3 | 4 | 5 |
VE2. Energy and resource savings | 1 | 2 | 3 | 4 | 5 |
VE3. Recycling after the demolition of a building | 1 | 2 | 3 | 4 | 5 |
VE4. Environmental pollution reduction | 1 | 2 | 3 | 4 | 5 |
Social benefits | |||||
VF1. Application of new technologies and management methods | 1 | 2 | 3 | 4 | 5 |
VF2. Spillover effect | 1 | 2 | 3 | 4 | 5 |
VF3. Satisfaction of participants | 1 | 2 | 3 | 4 | 5 |
References
- Blismas, N.; Wakefield, R. Drivers, constraints and the future of offsite manufacture in Australia. Constr. Innov. 2009, 9, 72–83. [Google Scholar] [CrossRef]
- Cantin, R.; Kindinis, A.; Michel, P. New approaches for overcoming the complexity of future buildings impacted by new energy constraints. Futures 2012, 44, 735–745. [Google Scholar] [CrossRef]
- Kheiri, F. A review on optimization methods applied in energy-efficient building geometry and envelope design. Renew. Sustain. Energy Rev. 2018, 92, 897–920. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation. Energy Build. 2015, 93, 303–314. [Google Scholar] [CrossRef]
- Zhang, X.; Skitmore, M.; Peng, Y. Exploring the challenges to industrialized residential building in China. Habitat Int. 2014, 41, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Mao, C.; Liu, G.; Wang, X. Analysis of stakeholder relationships in the industry chain of industrialized building in China. J. Clean. Prod. 2017, 152, 387–398. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Zuo, J.; Xia, R.; Zillante, G. Are construction enterprises ready for industrialized residential building policy? A case study in Shenzhen. Sustain. Cities Soc. 2018. [Google Scholar] [CrossRef]
- Hong, J.; Shen, G.Q.; Li, Z.; Zhang, B.; Zhang, W. Barriers to promoting prefabricated construction in China: A cost-benefit analysis. J. Clean. Prod. 2018, 172, 649–660. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Polat, G. Factors Affecting the Use of Precast Concrete Systems in the United States. J. Constr. Eng. Manag. 2008. [Google Scholar] [CrossRef]
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar] [CrossRef]
- Richard, R.B. Industrialised building systems: Reproduction before automation and robotics. Autom. Constr. 2005, 14, 442–451. [Google Scholar] [CrossRef]
- Jaganathan, S.; Nesan, L.J.; Ibrahim, R.; Mohammad, A.H. Integrated design approach for improving architectural forms in industrialized building systems. Front. Archit. Res. 2013, 2, 377–386. [Google Scholar] [CrossRef]
- Ji, Y.; Zhu, F.; Li, H.; Al-Hussein, M. Construction Industrialization in China: Current Profile and the Prediction. Appl. Sci. 2017, 7, 180. [Google Scholar] [CrossRef]
- Zhang, J.; Long, Y.; Lv, S.; Xiang, Y. BIM-enabled Modular and Industrialized Construction in China. Procedia Eng. 2016, 145, 1456–1461. [Google Scholar] [CrossRef]
- Liu, H. A New Perspective of Building Industrialization to Promote Rapid Development of China’s Construction. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjymKmLi9rcAhXSad4KHdIHBE8QFjAAegQIChAC&url=http%3A%2F%2Fojs.udspub.com%2Findex.php%2Fjwc%2Farticle%2Fdownload%2F235%2F174&usg=AOvVaw0CVx4GyDyzspRMWd7thlSw (accessed on 30 April 2018).
- Li, Z.; Shen, G.Q.; Xue, X. Critical review of the research on the management of prefabricated construction. Habitat Int. 2014, 43, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Borjeghaleh, R.M.; Sardroud, J.M. Approaching Industrialization of Buildings and Integrated Construction Using Building Information Modeling. Procedia Eng. 2016, 164, 534–541. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Wu, G.; Li, X. Critical success factors for project planning and control in prefabrication housing production: A China study. Sustainability 2018, 10, 836. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Life cycle performance of modular buildings: A critical review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Azam Haron, N.; Abdul-Rahman, H.; Wang, C.; Wood, L.C. Quality function deployment modelling to enhance industrialised building system adoption in housing projects. Total Qual. Manag. Bus. Excell. 2015, 26, 703–718. [Google Scholar] [CrossRef]
- Musa, M.F.; Mohammad, M.F.; Mahbub, R.; Yusof, M.R. Enhancing the Quality of Life by Adopting Sustainable Modular Industrialised Building System (IBS) in the Malaysian Construction Industry. Procedia Soc. Behav. Sci. 2014, 153, 79–89. [Google Scholar] [CrossRef]
- Kibwami, N.; Tutesigensi, A. Enhancing sustainable construction in the building sector in Uganda. Habitat Int. 2016, 57, 64–73. [Google Scholar] [CrossRef]
- Rubio-Romero, J.C.; Suárez-Cebador, M.; Abad, J. Modeling injury rates as a function of industrialized versus on-site construction techniques. Accid. Anal. Prev. 2014, 66, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Dainty, A.R.J.; Gibb, A.G.F. Establishing and Weighting Decision Criteria for Building System Selection in Housing Construction. J. Constr. Eng. Manag. 2012, 138, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Gibb, A.G.F.; Sellars, A.B. Maintenance cost implications of utilizing bathroom modules manufactured offsite. Constr. Manag. Econ. 2008, 26, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Yuan, H. Investigating waste reduction potential in the upstream processes of offshore prefabrication construction. Renew. Sustain. Energy Rev. 2013, 28, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Eastman, C.M.; Sacks, R. Relative Productivity in the AEC Industries in the United States for On-Site and Off-Site Activities. J. Constr. Eng. Manag. 2008, 134, 517–526. [Google Scholar] [CrossRef]
- Johnson, C. Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey. Habitat Int. 2007, 31, 36–52. [Google Scholar] [CrossRef]
- Pons, O.; Wadel, G. Environmental impacts of prefabricated school buildings in Catalonia. Habitat Int. 2011, 35, 553–563. [Google Scholar] [CrossRef]
- Aye, L.; Ngo, T.; Crawford, R.H.; Gammampila, R.; Mendis, P. Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy Build. 2012, 47, 159–168. [Google Scholar] [CrossRef]
- MHUCSTIDC China Prefabricated Building Development Report (2017), 1st ed.; China Construction Industry Press: Beijing, China, 2017; ISBN 978-7-112-21214-9.
- MOHURD. Evaluation Criterion for Prefabricated Building will Apply from February 2018. Available online: http://www.cstcmoc.org.cn/plus/view.php?aid=3799 (accessed on 20 February 2018).
- MOHURD. The Announcement of MOHURD on the Promulgation of the National Standard for Prefabricated Building Assessment. Available online: http://www.mohurd.gov.cn/wjfb/201801/t20180122_234899.html (accessed on 20 February 2018).
- Shad, R.; Khorrami, M.; Ghaemi, M. Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city. Renew. Sustain. Energy Rev. 2017, 67, 324–340. [Google Scholar] [CrossRef]
- He, Y.; Kvan, T.; Liu, M.; Li, B. How green building rating systems affect designing green. Build. Environ. 2018, 133, 19–31. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, X.; Xu, Y.; Chen, P.H. A review of studies on green building assessment methods by comparative analysis. Energy Build. 2017, 146, 152–159. [Google Scholar] [CrossRef]
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- VanGeem, M. Achieving sustainability with precast concrete. Pci J. 2006, 51, 42–61. [Google Scholar] [CrossRef]
- Banihashemi, S.; Tabadkani, A.; Hosseini, M.R. Integration of parametric design into modular coordination: A construction waste reduction workflow. Autom. Constr. 2018, 88, 1–12. [Google Scholar] [CrossRef]
- Azman, M.N.A.; Ahamad, M.S.S.; Majid, T.A.; Yahaya, A.S.; Hanafi, M.H. Statistical evaluation of pre-selection criteria for industrialized building system (IBS). J. Civ. Eng. Manag. 2013, 19, S131–S140. [Google Scholar] [CrossRef]
- Ismail, F.; Yusuwan, N.M.; Baharuddin, H.E.A. Management Factors for Successful IBS Projects Implementation. Procedia Soc. Behav. Sci. 2012, 68, 99–107. [Google Scholar] [CrossRef]
- Singh, M.M.; Sawhney, A.; Borrmann, A. Modular Coordination and BIM: Development of Rule Based Smart Building Components. Procedia Eng. 2015, 123, 519–527. [Google Scholar] [CrossRef]
- Zhai, X.; Reed, R.; Mills, A. Factors impeding the offsite production of housing construction in China: An investigation of current practice. Constr. Manag. Econ. 2014, 32, 40–52. [Google Scholar] [CrossRef]
- Molavi, J.; Barral, D.L. A Construction Procurement Method to Achieve Sustainability in Modular Construction. Procedia Eng. 2016, 145, 1362–1369. [Google Scholar] [CrossRef]
- Mao, C.; Xie, F.; Hou, L.; Wu, P.; Wang, J.; Wang, X. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat Int. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Fung, I.W.H.; Sing, M.C.P.; Ogunlana, S.O. Best practice of prefabrication implementation in the Hong Kong public and private sectors. J. Clean. Prod. 2015, 109, 216–231. [Google Scholar] [CrossRef]
- Omar, A.; Mahmoud, B. Calculation of seismic vulnerability index for steel structures. Energy Procedia 2017, 139, 558–564. [Google Scholar] [CrossRef]
- Li, Z.; Pasternak, H. Statistical size effect of flexural members in steel structures. J. Constr. Steel Res. 2018, 144, 176–185. [Google Scholar] [CrossRef]
- Bergström, M.; Stehn, L. Benefits and disadvantages of ERP in industrialised timber frame housing in Sweden. Constr. Manag. Econ. 2005, 23, 831–838. [Google Scholar] [CrossRef]
- Johnsson, H.; Meiling, J.H. Defects in offsite construction: Timber module prefabrication. Constr. Manag. Econ. 2009, 27, 667–681. [Google Scholar] [CrossRef]
- Foraboschi, P. Versatility of steel in correcting construction deficiencies and in seismic retrofitting of RC buildings. J. Build. Eng. 2016, 8, 107–122. [Google Scholar] [CrossRef]
- Gibb, A.G.F. Standardization and pre-assembly-distinguishing myth from reality using case study research. Constr. Manag. Econ. 2001, 19, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Goodier, C.I.; Gibb, A.G.F. Future opportunities for o site in the UK. Constr. Manag. Econ. 2007, 25, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Focacci, F.; Foraboschi, P.; De Stefano, M. Composite beam generally connected: Analytical model. Compos. Struct. 2015, 133, 1237–1248. [Google Scholar] [CrossRef]
- Foraboschi, P. Structural layout that takes full advantage of the capabilities and opportunities afforded by two-way RC floors, coupled with the selection of the best technique, to avoid serviceability failures. Eng. Fail. Anal. 2016, 70, 387–418. [Google Scholar] [CrossRef]
- Nahmens, I.; Bindroo, V. Is Customization Fruitful in Industrialized Homebuilding Industry? J. Constr. Eng. Manag. 2011, 137, 1027–1035. [Google Scholar] [CrossRef]
- Rahim, A.A.; Hamid, Z.A.; Zen, I.H.; Ismail, Z.; Kamar, K.A.M. Adaptable Housing of Precast Panel System in Malaysia. Procedia Soc. Behav. Sci. 2012, 50, 369–382. [Google Scholar] [CrossRef]
- Gan, Y.; Shen, L.; Chen, J.; Tam, V.; Tan, Y.; Illankoon, I. Critical Factors Affecting the Quality of Industrialized Building System Projects in China. Sustainability 2017, 9, 216. [Google Scholar] [CrossRef]
- Kang, Y.; Siddiqui, S.; Suk, S.J.; Chi, S.; Kim, C. Trends of Fall Accidents in the U.S. Construction Industry. J. Constr. Eng. Manag. 2017, 143, 04017043. [Google Scholar] [CrossRef]
- Ng, S.T.; Tang, Z. Labour-intensive construction sub-contractors: Their critical success factors. Int. J. Proj. Manag. 2010, 28, 732–740. [Google Scholar] [CrossRef]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. Health Impacts of Workplace Heat Exposure: An Epidemiological Review. Ind. Health 2014, 52, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Song, Z.; Wang, T.; Zheng, Y.; Ning, X. Health impacts of construction noise on workers: A quantitative assessment model based on exposure measurement. J. Clean. Prod. 2016, 135, 721–731. [Google Scholar] [CrossRef]
- Steinhardt, D.A.; Manley, K. Adoption of prefabricated housing-the role of country context. Sustain. Cities Soc. 2016, 22, 126–135. [Google Scholar] [CrossRef]
- Li, H.X.; Al-Hussein, M.; Lei, Z.; Ajweh, Z. Risk identification and assessment of modular construction utilizing fuzzy analytic hierarchy process (AHP) and simulation. Can. J. Civ. Eng. 2013, 40, 1184–1195. [Google Scholar] [CrossRef]
- Zeynalian, M.; Trigunarsyah, B.; Ronagh, H.R. Alignment between Lean Principles and Practices and Worker Safety Behavior. J. Constr. Eng. Manag. 2013, 138, 51–60. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, H. Prefabrication construction in residential building of Vanke real estate company China. In Proceedings of the 2009 International Conference on Management and Service Science, Wuhan, China, 20–22 September 2009. [Google Scholar]
- Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131–143. [Google Scholar] [CrossRef]
- Alyami, S.H.; Rezgui, Y. Sustainable building assessment tool development approach. Sustain. Cities Soc. 2012, 5, 52–62. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, Z.; Tam, V.W.Y.; Bian, Y.; Li, S.; Illankoon, I.M.C.S.; Moon, S. Green building evaluation system implementation. Build. Environ. 2018, 133, 32–40. [Google Scholar] [CrossRef]
- Foraboschi, P.; Mercanzin, M.; Trabucco, D. Sustainable structural design of tall buildings based on embodied energy. Energy Build. 2014, 68, 254–269. [Google Scholar] [CrossRef]
- Li, X.X.; Li, G.L. Exploration of Modular Build of Architectural Space. Appl. Mech. Mater. 2013, 357–360, 338–344. [Google Scholar] [CrossRef]
- Abowitz, D.A.; Toole, T.M. Mixed Method Research: Fundamental Issues of Design, Validity, and Reliability in Construction Research. J. Constr. Eng. Manag. 2010, 136, 108–116. [Google Scholar] [CrossRef]
- Valdes-Vasquez, R.; Klotz, L.E. Social Sustainability Considerations during Planning and Design: Framework of Processes for Construction Projects. J. Constr. Eng. Manag. 2013, 139, 80–89. [Google Scholar] [CrossRef]
- Applied Statistics Using SPSS, STATISTICA, MATLAB and R; Marques de Sá, J.P. (Ed.) Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71971-7. [Google Scholar]
- Structural Equation Modeling with AMOS; Routledge: Abingdon-on-Thames, UK, 2009; ISBN 9780203805534.
- Brandt, S. Data Analysis; Springer International Publishing: Cham, Switzerland, 2014; ISBN 978-3-319-03761-5. [Google Scholar]
- Cleff, T. Exploratory Data Analysis in Business and Economics; Springer International Publishing: Cham, Switzerland, 2014; ISBN 978-3-319-01516-3. [Google Scholar]
- Boddy, R.; Smith, G. Statistical Methods in Practice; John Wiley & Sons, Ltd.: Chichester, UK, 2009; ISBN 9780470749296. [Google Scholar]
- Egerton, R.F. Physical Principles of Electron Microscopy; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-39876-1. [Google Scholar]
- Barton, J. The Theology of the Book of Amos; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139046497. [Google Scholar]
- Pan, W.; Gibb, A.G.F.; Dainty, A.R.J. Strategies for Integrating the Use of Off-Site Production Technologies in House Building. J. Constr. Eng. Manag. 2012, 138, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Brown, J.; Gaze, C. Re-engineering the construction process in the speculative house-building sector. Constr. Manag. Econ. 2003, 21, 137–146. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z.; Li, L.; Gao, Y. Constraints on the Promotion of Prefabricated Construction in China. Sustainability 2018, 10, 2516. [Google Scholar] [CrossRef]
- Jiang, R.; Mao, C.; Hou, L.; Wu, C.; Tan, J. A SWOT analysis for promoting off-site construction under the backdrop of China’s new urbanisation. J. Clean. Prod. 2018, 173, 225–234. [Google Scholar] [CrossRef]
- Pan, W.; Gibb, A.F.; Dainty, A.R.J. Perspective of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Goodier, C. House-Building Business Models and Off-Site Construction Take-Up. J. Archit. Eng. 2012, 18, 84–93. [Google Scholar] [CrossRef] [Green Version]
Dimension | Code | Indicators | References |
---|---|---|---|
Efficiency | VA1 | Integrated design | [41] |
VA2 | Integrated construction | [42] | |
VA3 | Integrated management | [16,43,44] | |
VA4 | Construction schedule | [1,9,18,21,40] | |
Economic factors | VB1 | On-site construction cost | [1,47] |
VB2 | Operating and maintenance costs | [9,45] | |
VB3 | Management cost | [9,45] | |
VB4 | Prefabrication and transportation cost | [1,9,47,48] | |
VB5 | Consumption of building materials, energy, and resources | [1,9,21,45] | |
Livability | VC1 | Durability of building | [33] |
VC2 | Safety of building | [33] | |
VC3 | Adaptability of building | [58,59] | |
VC4 | Quality level of the building | [1,18,21,60] | |
Safety | VD1 | Safety of employees | [1,18,21,67] |
VD2 | Health of employees | [1,62,64,67] | |
VD3 | Possibility of accidents in construction | [1,25,66] | |
Environmental factors | VE1 | Waste reduction | [1,68] |
VE2 | Energy and resource savings | [1,2,4,9,21,71] | |
VE3 | Recycling after the demolition of a building | [1,73] | |
VE4 | Environmental pollution reduction | [1,18,21,69] | |
Social benefits | VF1 | Application of new technologies and management methods | [18,70] |
VF2 | Spillover effects | [18,74] | |
VF3 | Satisfaction of participants | [18,75] |
Variables | Category | Frequency | Frequency (%) |
---|---|---|---|
Age | 18–29 | 32 | 10.85% |
30–39 | 67 | 22.71% | |
40–49 | 120 | 40.68% | |
50–59 | 58 | 19.66% | |
>60 | 18 | 6.10% | |
Type of work | Designers | 55 | 18.64% |
Developers | 52 | 17.63% | |
Engineers | 52 | 17.63% | |
Contractors | 45 | 15.25% | |
Component suppliers | 46 | 15.59% | |
Property managers | 45 | 15.25% | |
Number of employees | 1–49 | 35 | 11.86% |
50–99 | 24 | 8.14% | |
100–199 | 45 | 15.25% | |
200–299 | 33 | 11.19% | |
300–399 | 27 | 9.15% | |
400–499 | 34 | 11.53% | |
>500 | 97 | 32.88% | |
Working experience | 1–5 years | 19 | 6.44% |
6–10 years | 28 | 9.49% | |
10–15 years | 30 | 10.17% | |
16–20 years | 59 | 20.00% | |
21–25 years | 90 | 30.51% | |
26–30 years | 42 | 14.24% | |
>30 years | 27 | 9.15% |
Dimensions | Items | Cronbach’s α |
---|---|---|
Efficiency | 4 | 0.876 |
Economic factors | 5 | 0.881 |
Livability | 4 | 0.893 |
Safety | 3 | 0.880 |
Environmental factors | 4 | 0.922 |
Social benefits | 3 | 0.913 |
Code | Frequency | Mean | SD | Skewness | Kurtosis | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
VA1 | 4 | 100 | 68 | 98 | 25 | 3.14 | 1.024 | 0.127 | −1.120 |
VA2 | 20 | 44 | 104 | 102 | 25 | 3.23 | 1.027 | −0.380 | −0.298 |
VA3 | 20 | 49 | 95 | 99 | 32 | 3.25 | 1.071 | −0.314 | −0.489 |
VA4 | 15 | 32 | 122 | 96 | 30 | 3.32 | 0.972 | −0.340 | 0.043 |
VB1 | 4 | 39 | 165 | 67 | 20 | 3.20 | 0.803 | 0.249 | 0.399 |
VB2 | 18 | 51 | 110 | 95 | 21 | 3.17 | 0.999 | −0.284 | −0.331 |
VB3 | 26 | 53 | 111 | 88 | 17 | 3.06 | 1.030 | −0.285 | −0.430 |
VB4 | 19 | 48 | 104 | 94 | 30 | 3.23 | 1.047 | −0.276 | −0.409 |
VB5 | 9 | 53 | 127 | 89 | 17 | 3.18 | 0.898 | −0.127 | −0.182 |
VC1 | 21 | 48 | 85 | 95 | 46 | 3.33 | 1.136 | −0.321 | −0.637 |
VC2 | 29 | 56 | 81 | 70 | 59 | 3.25 | 1.250 | −0.169 | −0.961 |
VC3 | 40 | 48 | 83 | 68 | 56 | 3.18 | 1.292 | −0.180 | −0.988 |
VC4 | 20 | 36 | 82 | 119 | 38 | 3.40 | 1.074 | −0.560 | −0.234 |
VD1 | 6 | 32 | 80 | 108 | 69 | 3.68 | 1.013 | −0.443 | −0.411 |
VD2 | 9 | 33 | 82 | 97 | 74 | 3.66 | 1.067 | −0.451 | −0.468 |
VD3 | 7 | 22 | 114 | 97 | 55 | 3.58 | 0.955 | −0.253 | −0.159 |
VE1 | 22 | 33 | 89 | 119 | 32 | 3.36 | 1.059 | −0.586 | −0.142 |
VE2 | 28 | 49 | 73 | 99 | 46 | 3.29 | 1.194 | −0.362 | −0.764 |
VE3 | 32 | 31 | 86 | 109 | 37 | 3.30 | 1.151 | −0.535 | −0.427 |
VE4 | 38 | 46 | 74 | 107 | 30 | 3.15 | 1.193 | −0.395 | −0.797 |
VF1 | 18 | 80 | 82 | 89 | 26 | 3.08 | 1.080 | −0.039 | −0.828 |
VF2 | 34 | 52 | 75 | 100 | 34 | 3.16 | 1.190 | −0.318 | −0.821 |
VF3 | 35 | 60 | 56 | 96 | 48 | 3.21 | 1.271 | −0.271 | −1.044 |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.883 | |
---|---|---|
Bartlett’s spherical test | Approximate Chi-Square | 4512.207 |
df | 253 | |
Sig. | 0.000 |
Code | Factors | Communality | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
VA1 | 0.166 | 0.007 | 0.036 | 0.817 | 0.08 | 0.026 | 0.704 |
VA2 | 0.077 | 0.098 | 0.04 | 0.824 | 0.1 | 0.051 | 0.708 |
VA3 | 0.099 | 0.115 | 0.044 | 0.865 | 0.163 | 0.115 | 0.813 |
VA4 | 0.147 | 0.137 | 0.106 | 0.811 | 0.091 | 0.025 | 0.719 |
VB1 | 0.814 | 0.1 | 0.068 | 0.168 | 0.079 | 0.163 | 0.739 |
VB2 | 0.775 | 0.069 | 0.139 | 0.134 | 0.108 | −0.001 | 0.655 |
VB3 | 0.742 | 0.114 | 0.156 | 0.058 | 0.145 | 0.135 | 0.63 |
VB4 | 0.844 | 0.109 | 0.086 | 0.093 | 0.122 | −0.011 | 0.755 |
VB5 | 0.789 | 0.121 | 0.119 | 0.102 | 0.155 | 0.076 | 0.691 |
VC1 | 0.12 | 0.188 | 0.825 | 0.11 | 0.126 | 0.09 | 0.766 |
VC2 | 0.144 | 0.143 | 0.865 | 0.072 | 0.182 | 0.074 | 0.833 |
VC3 | 0.138 | 0.279 | 0.832 | 0.019 | 0.088 | 0.025 | 0.797 |
VC4 | 0.145 | 0.127 | 0.792 | 0.04 | −0.065 | 0.15 | 0.693 |
VD1 | 0.076 | 0.22 | 0.104 | 0.049 | −0.001 | 0.872 | 0.829 |
VD2 | 0.068 | 0.098 | 0.049 | 0.079 | 0.058 | 0.909 | 0.852 |
VD3 | 0.142 | 0.113 | 0.151 | 0.07 | 0.141 | 0.826 | 0.763 |
VE1 | 0.096 | 0.806 | 0.221 | 0.114 | 0.149 | 0.195 | 0.78 |
VE2 | 0.098 | 0.858 | 0.18 | 0.079 | 0.149 | 0.137 | 0.825 |
VE3 | 0.154 | 0.858 | 0.174 | 0.131 | 0.134 | 0.102 | 0.835 |
VE4 | 0.174 | 0.835 | 0.201 | 0.086 | 0.172 | 0.095 | 0.814 |
VF1 | 0.157 | 0.186 | 0.078 | 0.153 | 0.848 | 0.055 | 0.811 |
VF2 | 0.189 | 0.162 | 0.096 | 0.202 | 0.885 | 0.062 | 0.898 |
VF3 | 0.246 | 0.207 | 0.124 | 0.108 | 0.844 | 0.104 | 0.854 |
Eigenvalues | 7.701 | 2.683 | 2.203 | 1.958 | 1.799 | 1.421 | |
Percentage of variance | 33.483 | 11.665 | 9.578 | 8.513 | 7.82 | 6.179 | |
Cumulative percentage of variance | 33.483 | 45.147 | 54.726 | 63.239 | 71.059 | 77.238 |
Fitting Index | Acceptable Range | Measured Value |
---|---|---|
CMIN | 284.986 | |
DF | 215 | |
CMIN/DF | <3 | 1.326 |
GFI | >0.8 | 0.925 |
AGFI | >0.8 | 0.903 |
RMSEA | <0.08 | 0.033 |
IFI | >0.9 | 0.984 |
NNFI | >0.9 | 0.981 |
CFI | >0.9 | 0.984 |
Dimensions | Items | Non-Standardized Factor Load | Standard Error | CR (t-Value) | p | Standardized Factor Load | CR | AVE |
---|---|---|---|---|---|---|---|---|
Efficiency | VA1 | 1 | 0.733 | 0.877 | 0.642 | |||
VA2 | 1.055 | 0.082 | 12.826 | *** | 0.771 | |||
VA3 | 1.285 | 0.088 | 14.64 | *** | 0.901 | |||
VA4 | 1.023 | 0.078 | 13.157 | *** | 0.791 | |||
Economic factors | VB1 | 1 | 0.812 | 0.886 | 0.609 | |||
VB2 | 1.134 | 0.083 | 13.62 | *** | 0.741 | |||
VB3 | 1.152 | 0.086 | 13.367 | *** | 0.73 | |||
VB4 | 1.324 | 0.085 | 15.603 | *** | 0.825 | |||
VB5 | 1.084 | 0.074 | 14.725 | *** | 0.788 | |||
Livability | VC1 | 1 | 0.833 | 0.895 | 0.682 | |||
VC2 | 1.167 | 0.064 | 18.132 | *** | 0.883 | |||
VC3 | 1.171 | 0.067 | 17.465 | *** | 0.857 | |||
VC4 | 0.819 | 0.06 | 13.712 | *** | 0.721 | |||
Safety | VD1 | 1 | 0.874 | 0.882 | 0.715 | |||
VD2 | 1.062 | 0.06 | 17.646 | *** | 0.881 | |||
VD3 | 0.838 | 0.054 | 15.49 | *** | 0.777 | |||
Environmental factors | VE1 | 1 | 0.841 | 0.922 | 0.748 | |||
VE2 | 1.165 | 0.062 | 18.747 | *** | 0.87 | |||
VE3 | 1.139 | 0.059 | 19.139 | *** | 0.881 | |||
VE4 | 1.16 | 0.062 | 18.634 | *** | 0.867 | |||
Social benefit | VF1 | 1 | *** | 0.83 | 0.916 | 0.785 | ||
VF2 | 1.249 | 0.062 | 20.236 | *** | 0.941 | |||
VF3 | 1.253 | 0.066 | 18.938 | *** | 0.884 |
Dimensions | Efficiency | Economic Factors | Livability | Safety | Environmental Factors | Social Benefit |
---|---|---|---|---|---|---|
Efficiency | 0.801 | |||||
Economic factors | 0.310 ** | 0.780 | ||||
Livability | 0.192 ** | 0.341 ** | 0.825 | |||
Safety | 0.182 ** | 0.236 ** | 0.260 ** | 0.845 | ||
Environmental factors | 0.272 ** | 0.336 ** | 0.464 ** | 0.348 ** | 0.864 | |
Social benefits | 0.343 ** | 0.412 ** | 0.292 ** | 0.223 ** | 0.428 ** | 0.886 |
Fitness Index | Acceptable Range | Measured Value |
---|---|---|
CMIN | 456.093 | |
DF | 225 | |
CMIN/DF | <3 | 2.207 |
GFI | >0.8 | 0.870 |
AGFI | >0.8 | 0.840 |
RMSEA | <0.08 | 0.059 |
IFI | >0.9 | 0.948 |
NNFI | >0.9 | 0.941 |
CFI | >0.9 | 0.947 |
Hypothesized Relationship | β Coefficient | S.E. | T | p | Supported or Rejected | ||
---|---|---|---|---|---|---|---|
Efficiency | → | Economy factors | 0.389 | 0.059 | 5.824 | *** | Supported |
Efficiency | → | Livability | 0.272 | 0.082 | 4.164 | *** | Supported |
Efficiency | → | Safety | 0.247 | 0.077 | 3.768 | *** | Supported |
Efficiency | → | Environmental factors | 0.363 | 0.077 | 5.574 | *** | Supported |
Efficiency | → | Social benefit | 0.437 | 0.078 | 6.654 | *** | Supported |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Li, Z.; Li, L.; Li, T.; Gao, Y. A Framework of Industrialized Building Assessment in China Based on the Structural Equation Model. Int. J. Environ. Res. Public Health 2018, 15, 1687. https://doi.org/10.3390/ijerph15081687
Jiang L, Li Z, Li L, Li T, Gao Y. A Framework of Industrialized Building Assessment in China Based on the Structural Equation Model. International Journal of Environmental Research and Public Health. 2018; 15(8):1687. https://doi.org/10.3390/ijerph15081687
Chicago/Turabian StyleJiang, Lei, Zhongfu Li, Long Li, Tiankun Li, and Yunli Gao. 2018. "A Framework of Industrialized Building Assessment in China Based on the Structural Equation Model" International Journal of Environmental Research and Public Health 15, no. 8: 1687. https://doi.org/10.3390/ijerph15081687
APA StyleJiang, L., Li, Z., Li, L., Li, T., & Gao, Y. (2018). A Framework of Industrialized Building Assessment in China Based on the Structural Equation Model. International Journal of Environmental Research and Public Health, 15(8), 1687. https://doi.org/10.3390/ijerph15081687