Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dust
2.2. Filtering Nonwovens
2.3. Dust Deposition in the Fibres of Filtering Nonwovens
2.4. Microorganisms
2.5. Assessment of the Survival of Microorganisms on Dust-Loaded Nonwovens
2.6. Microscopic Assessment of Biofilms of Dust-Loaded Filtering Fibres
2.7. The Influence of Microbial Growth on Nanoparticles and Submicron Particles Penetration through Filtering Nonwovens
2.8. Statistical Analysis
3. Results and Discussion
3.1. Deposition of Dust on Filtering Nonwovens
3.2. Survival of Microorganisms on Dust-Loaded Filtering Nonwovens
3.3. Microscopic Assessment of Biofilms on Dust-Loaded Filtering Nonwovens
3.4. The Influence of Microbial Growth on Nanoparticles and Submicron Particles Penetration through Filtering Nonwovens
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Directive 2000/54/EC of The European Parliament and of The Council of 18 September 2000 on the Protection of Workers From Risks Related to Exposure to Biological Agents at Work. Available online: http://www.biosafety.be/PDF/2000_54.pdf (accessed on 27 July 2018).
- Viegas, S.; Caetano, L.A.; Korkalainen, M.; Faria, T.; Pacífico, C.; Carolino, E.; Quintal Gomes, A.; Viegas, C. Cytotoxic and inflammatory potential of air samples from occupational settings with exposure to organic dust. Toxics 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Rusca, S.; Charrière, N.; Droz, P.O.; Oppliger, A. Effects of bioaerosol exposure on work-related symptoms among Swiss sawmill workers. Int. Arch. Occup. Environ. Health 2008, 81, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Matheson, M.; Benke, G.; Raven, J.; Sim, M.; Kromhout, H.; Vermeulen, R.; Johns, D.P.; Walters, E.H.; Abramson, M.J. Biological dust exposure in the workplace is a risk factor for chronic obstructive pulmonary disease. Thorax 2005, 60, 645–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.O.; Abdullah, A.A. Dust exposure and respiratory symptoms among cement factory workers in the United Arab Emirates. Ind. Health 2012, 50, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Heal. Part B 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Gutarowska, B.; Szulc, J.; Nowak, A.; Otlewska, A.; Okrasa, M.; Jachowicz, A.; Majchrzycka, K. Dust at various workplaces—Microbiological and toxicological threats. Int. J. Environ. Res. Public Health 2018, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Śpiewak, R.; Jabłoński, L.; Szymańska, J. Biological Occupational Risk Factors. Classification, Exposed Occupational Groups, Measurement, Prevention (in Polish); Ad Punctum: Lublin, Poland, 2007. [Google Scholar]
- Directive 89/656/EEC of 30 November 1989 on the Minimum Health and Safety Requirements for the Use by Workers of Personal Protective Equipment at the Workplace. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31989L0656&from=en (accessed on 27 July 2018).
- Majchrzycka, K.; Okrasa, M.; Skóra, J.; Gutarowska, B. Evaluation of the survivability of microorganisms deposited on filtering respiratory protective devices under varying conditions of humidity. Int. J. Environ. Res. Public Health 2016, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Maus, R.; Goppelsröder, A.; Umhauer, H. Survival of bacterial and mold spores in air filter media. Atmos. Environ. 2001, 35, 105–113. [Google Scholar] [CrossRef]
- Jankowska, E.; Reponen, T.; Willeke, K.; Grinshpun, S.A.; Choi, K.J. Collection of fungal spores on air filters and spore reentrainment from filters into air. J. Aerosol. Sci. 2000, 31, 969–978. [Google Scholar] [CrossRef]
- Szulc, J.; Otlewska, A.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Gutarowska, B. Microbiological contamination at workplaces in a combined heat and power (CHP) station processing plant biomass. Int. J. Environ. Res. Public Health 2017, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Majchrzycka, K.; Okrasa, M.; Szulc, J.; Gutarowska, B. The impact of dust in filter materials of respiratory protective devices on the microorganisms viability. Int. J. Ind. Ergon. 2017, 58, 109–116. [Google Scholar] [CrossRef]
- GESTIS: International Occupational Exposure Limit Values for Chemical Agents. Available online: http://limitvalue.ifa.dguv.de/ (accessed on 26 August 2018).
- Schuster, E.; Dunn-Coleman, N.; Frisvad, J.; van Dijck, P. On the safety of Aspergillus niger—A review. Appl. Microbiol. Biotechnol. 2002, 59, 426–435. [Google Scholar] [CrossRef] [PubMed]
- AATCC Test Method 100-2004. Antibacterial Finishes on Textile Materials: Assessment of Antibacterial Finishes on Textile Materials. Technical Manual/2010. 2004. Available online: http://www.manufacturingsolutionscenter.org/aatcc-100-antibacterial-finishes-textile.html (accessed on 30 August 2018).
- Brown, R.C. Air filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, 1st ed.; Pergamon Press: Oxford, UK, 1993; ISBN: 0080412742 9780080412740. [Google Scholar]
- Miguel, A.F. Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles. J. Aerosol Sci. 2003, 34, 783–799. [Google Scholar] [CrossRef]
- Russell, A.D. Similarities and differences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 2003, 52, 750–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutarowska, B.; Skóra, J.; Zduniak, K.; Rembisz, D. Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int. Biodeterior. Biodegradation 2012, 68, 7–17. [Google Scholar] [CrossRef]
- Gutarowska, B.; Skóra, J.; Nowak, E.; Łysiak, I.; Wdówka, M. Antimicrobial activity and filtration effectiveness of nonwovens with Sanitized for respiratory protective equipment. Fibres Text. East. Eur. 2014, 22, 120–125. [Google Scholar]
- Brochocka, A.; Makowski, K.; Majchrzycka, K.; Grzybowski, P. Efficiency of filtering materials used in respiratory protective devices against nanoparticles. Int. J. Occup. Saf. Ergon. 2013, 19, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, D.J.; Bergman, M.S.; Eimer, B.C.; Shaffer, R.E. Evaluation of five decontamination methods for filtering facepiece respirators. Ann. Occup. Hyg. 2009, 53, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, D.; King, W.P.; Shaffer, R.E. Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models. J. Int. Soc. Respir. Prot. 2007, 24, 93–107. [Google Scholar]
- Zhou, Y.; Cheng, Y.S. Evaluation of N95 filtering facepiece respirators challenged with engineered nanoparticles. Aerosol Air Qual. Res. 2016, 16, 212–220. [Google Scholar] [CrossRef]
- Bałazy, A.; Podgórski, A.; Gradoń, L. Filtration of nanosized aerosol particles in fibrous filters. I—Experimental results. J. Aerosol Sci. 2004, 35, 967–980. [Google Scholar] [CrossRef]
- Wang, C.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.R.; Pui, D.Y.H. Modeling of filtration efficiency of nanoparticles in standard filter media. J. Nanoparticle Res. 2007, 9, 109–115. [Google Scholar] [CrossRef]
Nonwoven Type Designation | Nonwoven Type | Function in FFR Structure | Nominal Surface Mass, G/M2 |
---|---|---|---|
MB | melt-blown, electret | high-efficiency filtration | 90 |
SB | spun-bonded | pre-filtration of coarse dust particles | 20 |
NP | needle-punched, calandered | stiffening of the FFR structure | 110 |
Nonwoven Type | Dust Type | Mass of Dust Deposited in the Nonwoven (Deposition Time), Mg/ Dust Content in the Filtering Nonwoven, % | |
---|---|---|---|
Medium (2 min) | High (4 min) | ||
MB | A | 15.3/5.9 | 35.3/13.5 |
B | 37.9/2.0 | 89.2/5.5 | |
SB | A | 6.0/9.6 | 11.7/14.4 |
B | 13.2/4.8 | 19.6/8.5 | |
NP | A | 6.3/1.6 | 29.0/4.1 |
B | 12.3/0.8 | 40.1/3.3 |
Nonwoven Type | Dust Type | Dust Content | Variant | Number of Microorganisms at 0 h, CFU/Sample | Number of Microorganisms at 8 h, CFU/Sample |
---|---|---|---|---|---|
MB | C | 0 | a | M: 9.26 × 107 SD: 5.29 × 107 | M: 1.17 × 109# SD: 7.86 × 108 |
A | medium | b | M: 7.70 × 107 SD: 7.60 × 107 | M: 1.97 × 109# SD: 9.59 × 108 | |
high | c | M: 2.80 × 107 SD: 1.73 × 107 | M: 3.78 × 109# SD: 2.09 × 109 | ||
B | medium | d | M: 2.12 × 107 SD: 1.16 × 107 | M: 2.19 × 109 SD: 2.57 × 109 | |
high | e | M: 5.12 × 104f SD: 3.99 × 104 | M: 8.22 ×107k SD: 8.51 × 107 | ||
SB | C | 0 | f | M: 1.74 × 108e SD: 1.51 × 108 | M: 3.92 × 108k SD: 3.13 × 108 |
A | medium | g | M: 1.34 × 108 SD: 8.51 × 107 | M: 3.26 × 108#k SD: 1.62 × 108 | |
high | h | M: 1.30 × 108 SD: 9.41 × 107 | M: 4.38 × 108#k SD: 6.18 × 107 | ||
B | medium | i | M: 1.11 × 108 SD: 5.05 × 107 | M: 1.46 × 108k SD: 5.52 × 107 | |
high | j | M: 1.05 × 108 SD: 7.30 × 107 | M: 1.46 × 108k SD: 7.10 × 107 | ||
NP | C | 0 | k | M: 7.34 × 107 SD: 3.15 × 107 | M: 5.04 × 109f,g,h,i,j,l,n,o SD: 5.00 × 109 |
A | medium | l | M: 7.04 × 107 SD: 5.66 × 107 | M: 8.22 × 108#k SD: 5.82 × 108 | |
high | m | M: 1.31 × 108 SD: 1.28 × 108 | M: 3.72 × 109 SD: 3.60 × 109 | ||
B | medium | n | M: 8.96 × 107 SD: 6.92 × 107 | M: 1.58 × 108k SD: 3.11 × 107 | |
high | o | M: 1.58 × 107a SD: 1.15 × 107 | M: 1.79 × 108#k SD: 1.17 × 108 |
Nonwoven Type | Dust Type | Dust Content | Variant | Number of Microorganisms at 0 h, CFU/Sample | Number of Microorganisms at 8 h, CFU/Sample |
---|---|---|---|---|---|
MB | C | 0 | a | M: 5.02 × 105 SD: 5.93 × 104 | M: 3.82 × 106#d,e,i,j,m,n,o SD: 2.49 × 106 |
A | medium | b | M: 3.14 × 105 SD: 5.37 × 104 | M: 2.72 × 106#e,j SD: 2.77 × 105 | |
high | c | M: 4.00 × 105 SD: 5.34 × 104 | M: 1.94 × 106# SD: 7.02 × 105 | ||
B | medium | d | M: 2.66 × 105k,i SD: 1.15 × 105 | M: 1.03 × 106#a SD: 2.93 × 105 | |
high | e | M: 4.06 × 105 SD: 1.07 × 105 | M: 8.38 × 104#a,b,g,h,k SD: 3.04 × 104 | ||
SB | C | 0 | f | M: 4.18 × 105 SD: 1.70 × 105 | M: 2.08 × 106# SD: 1.03 × 106 |
A | medium | g | M: 4.18 × 105 SD: 2.29 × 105 | M: 2.72 × 106# e,j SD: 1.26 × 106 | |
high | h | M: 6.80 × 105d SD: 4.35 × 105 | M: 2.66 × 106#e SD: 1.45 × 106 | ||
B | medium | i | M: 6.92 × 105d,k,m,n SD: 2.80 × 105 | M: 5.38 × 105#a SD: 3.08 × 105 | |
high | j | M: 4.02 × 105 SD: 1.04 × 105 | M: 2.86 × 105a,b,g,k SD: 1.49 × 105 | ||
NP | C | 0 | k | M: 3.02 × 105i,d SD: 1.06 × 105 | M: 2.88 × 106#e,j SD: 1.67 × 106 |
A | medium | l | M: 3.76 × 105 SD: 1.22 × 105 | M: 2.28 × 106# SD: 1.07 × 106 | |
high | m | M: 3.06 × 105i SD: 6.47 × 104 | M: 8.18 × 105#a SD: 3.26 × 105 | ||
B | medium | n | M: 3.10 × 105i SD: 5.57 × 104 | M: 1.37 × 106#a SD: 4.65 × 105 | |
high | o | M: 3.94 × 105 SD: 6.50 × 104 | M: 9.10 × 105a SD: 1.28 × 106 |
Nonwoven Type | Dust Type | Dust Content | Variant | Number of Microorganisms at 0 h, CFU/Sample | Number of Microorganisms at 8 h, CFU/Sample |
---|---|---|---|---|---|
MB | C | 0 | a | M: 3.26 × 105 SD: 1.00 × 105 | M: 1.38 × 105#c,i SD: 4.44 × 104 |
A | medium | b | M: 2.40 × 105i SD: 5.87 × 104 | M: 1.88 × 105ci SD: 1.64 × 104 | |
high | c | M: 2.54 × 105i SD: 3.21 × 104 | M: 3.24 × 105#a,b,e-h,j-o SD: 2.61 × 104 | ||
B | medium | d | M: 2.42 × 105i SD: 3.77 × 104 | M: 2.32 × 105 g-i, l,n SD: 4.87 × 104 | |
high | e | M: 2.22 × 105i SD: 6.18 × 104 | M: 1.90 × 105c,i,l SD: 4.85 × 104 | ||
SB | C | 0 | f | M: 2.28 × 105i SD: 5.17 × 104 | M: 1.30 × 105#c,i SD: 3.32 × 104 |
A | medium | g | M: 2.24 × 105i SD: 7.70 × 104 | M: 9.70 × 104#c,d,i SD: 8.34 × 104 | |
high | h | M: 2.36 × 105i SD: 7.44 × 104 | M: 1.07 × 105# c,d,i SD: 5.59 × 104 | ||
B | medium | i | M: 5.08 × 105b-o SD: 1.84 × 105 | M: 3.60 × 105a,b,d-o SD: 1.09 × 105 | |
high | j | M: 1.64 × 105 SD: 4.16 × 104 | M: 1.72 × 105 SD: 3.56 × 104 | ||
NP | C | 0 | k | M: 2.14 × 105i SD: 7.86 × 104 | M: 1.47 × 105c,i SD: 6.51 × 104 |
A | medium | l | M: 2.96 × 105i SD: 1.16 × 105 | M: 7.12 × 104#c-e,i SD: 1.17 × 104 | |
high | m | M: 1.44 × 105i SD: 7.09 × 104 | M: 1.25 × 105c,i SD: 4.19 × 104 | ||
B | medium | n | M: 3.02 × 105i SD: 9.42 × 104 | M: 1.01 × 105#c,d,i SD: 4.71 × 104 | |
high | o | M: 1.60 × 105i SD: 2.92 × 104 | M: 1.23 × 105c,i SD: 3.50 × 104 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzycka, K.; Okrasa, M.; Jachowicz, A.; Szulc, J.; Gutarowska, B. Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency. Int. J. Environ. Res. Public Health 2018, 15, 1902. https://doi.org/10.3390/ijerph15091902
Majchrzycka K, Okrasa M, Jachowicz A, Szulc J, Gutarowska B. Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency. International Journal of Environmental Research and Public Health. 2018; 15(9):1902. https://doi.org/10.3390/ijerph15091902
Chicago/Turabian StyleMajchrzycka, Katarzyna, Małgorzata Okrasa, Anita Jachowicz, Justyna Szulc, and Beata Gutarowska. 2018. "Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency" International Journal of Environmental Research and Public Health 15, no. 9: 1902. https://doi.org/10.3390/ijerph15091902
APA StyleMajchrzycka, K., Okrasa, M., Jachowicz, A., Szulc, J., & Gutarowska, B. (2018). Microbial Growth on Dust-Loaded Filtering Materials Used for the Protection of Respiratory Tract as a Factor Affecting Filtration Efficiency. International Journal of Environmental Research and Public Health, 15(9), 1902. https://doi.org/10.3390/ijerph15091902