Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation
Abstract
:1. Introduction
- MSF: 25,000 m3/day and $1.10/m3
- MED: 10,000 m3/day and $0.80/m3
- VC: 3000 m3/day and $0.70/m3
- RO: 6000 m3/day and $0.70/m3
1.1. Energy Balance and Estimation
1.1.1. Heating Energy Required for Heating the Feed Stream
1.1.2. Cooling Energy Required for Permeate Condensation/Cooling
1.1.3. Electrical Energy Required for Circulating the Feed Stream
1.1.4. Electrical Energy Required for Vacuum Pump
2. Materials and Methods
3. Results and Discussion
3.1. Membrane Performance
3.2. Specific Energy Requirement
3.3. Single Pass versus Recirculation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Am | active membrane area (m2) |
Cp | non-condensable heat capacity (J/mol/K) |
Cpf | feed stream heat capacity (J/kg/K) |
Cp,g | water (vapour) heat capacity (J/kg/K) |
Cp,l | water (liquid) heat capacity (J/kg/K) |
D | pipe diameter (m) |
DH | hydraulic diameter (m) |
ev | friction loss factor (dimensionless) |
Ef | feed pump electrical energy (J) |
Er | latent heat of condensation (J) |
ETotal | overall energy requirement (J) |
Ev | vacuum pump electrical energy (J) |
f | Darcy’s friction factor (dimensionless) |
J | permeate flux (kg/m2·h) |
L | channel length (m) |
mf | mass flow rate of feed stream (kg/s) |
mnc | non-condensable flow rate (mol/s) |
mp | mass flow rate of permeate (kg/s) |
MW | molecular weight of non-condensable gases (g/mol) |
Pin | vacuum pump inlet pressure (Pa) |
Pout | vacuum pump outlet pressure (Pa) |
Qc | permeate stream cooling energy (J) |
Qh | feed stream heating energy (J) |
Qinit | one-off initial heating energy (J) |
R | universal gas constant (J/mol/K) |
Re | Reynold’s number (dimensionless) |
Tfi | temperature of feed inlet (K) |
Tfo | temperature of feed outlet (K) |
Tin | temperature of vacuum pump inlet stream (K) |
Tpc | condensation temperature of permeate (K) |
Tpi | temperature of permeate inlet (K) |
Tpo | temperature of permeate outlet (K) |
TRes | temperature of feed reservoir (K) |
Tout | temperature of vacuum pump outlet stream (K) |
u | linear velocity of feed stream (m/s) |
Vf | volumetric flow rate of feed stream (m3/s) |
ΔPf | pressure drop of pipe due to friction (Pa) |
ε | surface roughness (m) |
β | smaller cross section/larger cross section (dimensionless) |
γ | adiabatic expansion coefficient (dimensionless) |
λ | latent heat of condensation of water vapour (J/kg) |
ρ | fluid density (kg/m3) |
μ | fluid viscosity (Pa.s) |
ηp1 | feed pump efficiency (%) |
ηp2 | vacuum pump efficiency (%) |
Subscripts | |
fi | feed inlet |
fo | feed outlet |
pi | permeate inlet |
po | permeate outlet |
Abbreviations
BTESE | 1,2-bis (triethoxysilyl)ethane |
CDI | capacitive deionization |
EDR | electrodialysis reversal |
FO | forward osmosis |
MA | maleic acid |
MD | membrane distillation |
MED | multiple effect distillation |
MSF | multi-stage flash |
NaCl | sodium chloride |
PVA | polyvinyl alcohol |
RO | reverse osmosis |
TDS | total dissolve solid |
TEOS | tetraethyl orthosilicate |
VC | vapor compression |
References
- McGinnis, R.L.; Elimelech, M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination. Desalination 2007, 207, 370–382. [Google Scholar] [CrossRef]
- Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: Review and assessment. Desalination 2008, 223, 448–456. [Google Scholar] [CrossRef]
- Korngold, E.; Korin, E.; Ladizhensky, I. Water desalination by pervaporation with hollow fiber membranes. Desalination 1996, 107, 121–129. [Google Scholar] [CrossRef]
- Hoang, M.; Bolto, B.; Haskard, C.; Barron, O.; Gray, S.; Leslie, G. Desalination in Australia; CSIRO Water for a Healthy Country: Collingwood, Australia, 2009. [Google Scholar]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, G.; Sharma, V.K.; Braccio, G. Techno-economic evaluation of a solar powered water desalination plant. Energy Convers. Manag. 2003, 44, 2217–2240. [Google Scholar] [CrossRef]
- Suggala, S.V.; Bhattacharya, P.K. Real coded genetic algorithm for optimization of pervaporation process parameters for removal of volatile organics from water. Ind. Eng. Chem. Res. 2003, 42, 3118–3128. [Google Scholar] [CrossRef]
- Ji, W.C.; Hilaly, A.; Sikdar, S.K.; Hwang, S.T. Optimization of Multicomponent Pervaporation for Removal of Volatile, Organic-Compounds from Water. J. Membr. Sci. 1994, 97, 109–125. [Google Scholar] [CrossRef]
- Alklaibi, A.M. The potential of membrane distillation as a stand-alone desalination process. Desalination 2008, 223, 375–385. [Google Scholar] [CrossRef]
- Howell, J.A.; Watt Committee on Energy; Working Group on Membranes. The Membrane Alternative: Energy Implications for Industry; Watt Committee Report No. 21; Published on behalf of the Watt Committee on Energy by Elsevier Applied Science x; Elsevier: London, UK; New York, NY, USA, 1990; 165p. [Google Scholar]
- Criscuoli, A.; Carnevale, M.C.; Drioli, E. Evaluation of energy requirements in membrane distillation. Chem. Eng. Process 2008, 47, 1098–1105. [Google Scholar] [CrossRef]
- Servel, C.; Roizard, D.; Favre, E.; Horbez, D. Improved Energy Efficiency of a Hybrid Pervaporation/Distillation Process for Acetic Acid Production: Identification of Target Membrane Performances by Simulation. Ind. Eng. Chem. Res. 2014, 53, 7768–7779. [Google Scholar] [CrossRef]
- Shao, P.; Kumar, A. Process energy efficiency in pervaporative and vacuum membrane distillation separation of 2,3-butanediol. Can. J. Chem. Eng. 2011, 89, 1255–1265. [Google Scholar] [CrossRef]
- Munson, B.R.; Young, D.F.; Okiishi, T.H. Fundamentals of Fluid Mechanics, 4th ed.; John Wiley & Sons: New York, NY, USA; Chichester, UK, 2002. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2007; Volume xii, p. 905. [Google Scholar]
- Chodkiatsakul, I.; Charojrochkul, S.; Kiatkittipong, W.; Wiyaratn, W.; Soottitantawat, A.; Arpornwichanop, A.; Laosiripojana, N.; Assabumrungrat, S. Performance improvement of bioethanol-fuelled solid oxide fuel cell system by using penraporation. Int. J. Hydrogen Energy 2011, 36, 5067–5075. [Google Scholar] [CrossRef]
- Battino, R.; Rettich, T.R.; Tominaga, T. The Solubility of Nitrogen and Air in Liquids. J. Phys. Chem. Ref. Data 1984, 13, 563–600. [Google Scholar] [CrossRef]
- Carroll, J.J.; Slupsky, J.D.; Mather, A.E. The Solubility of Carbon-Dioxide in Water at Low-Pressure. J. Phys. Chem. Ref. Data 1991, 20, 1201–1209. [Google Scholar] [CrossRef]
- Vallieres, C.; Favre, E. Vacuum versus sweeping gas operation for binary mixtures separation by dense membrane processes. J. Membr. Sci. 2004, 244, 17–23. [Google Scholar] [CrossRef]
- Xie, Z.L.; Hoang, M.; Duong, T.; Ng, D.; Dao, B.; Gray, S. Sol-gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. J. Membr. Sci. 2011, 383, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.L.; Ng, D.; Hoang, M.; Duong, T.; Gray, S. Separation of aqueous salt solution by pervaporation through hybrid organic-inorganic membrane: Effect of operating conditions. Desalination 2011, 273, 220–225. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, J.D.; Duke, M.; Hoang, M.; Xie, Z.L.; Groth, A.; Tun, C.; Gray, S. Modelling of vacuum membrane distillation. J. Membr. Sci. 2013, 434, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Murad, S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Mol. Phys. 2001, 99, 1175–1181. [Google Scholar] [CrossRef]
- Duke, M.C.; Mee, S.; da Costa, J.C.D. Performance of porous inorganic membranes in non-osmotic desalination. Water Res. 2007, 41, 3998–4004. [Google Scholar] [CrossRef] [PubMed]
- Drobek, M.; Yacou, C.; Motuzas, J.; Julbe, A.; Ding, L.P.; da Costa, J.C.D. Long term pervaporation desalination of tubular MFI zeolite membranes. J. Membr. Sci. 2012, 415, 816–823. [Google Scholar] [CrossRef]
- Elma, M.; Yacou, C.; Wang, D.K.; Smart, S.; da Costa, J.C.D. Microporous Silica Based Membranes for Desalination. Water 2012, 4, 629–649. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, S.; Duke, M.C.; da Costa, J.C.D. Carbonised template silica membranes for desalination. Desalination 2009, 236, 291–298. [Google Scholar] [CrossRef]
- Ladewig, B.P.; Tan, Y.H.; Lin, C.X.C.; Ladewig, K.; da Costa, J.C.D.; Smart, S. Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination. Materials 2011, 4, 845–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.X.C.; Ding, L.P.; Smart, S.; da Costa, J.C.D. Cobalt oxide silica membranes for desalination. J. Colloid Interface Sci. 2012, 368, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Tsuru, T.; Igi, R.; Kanezashi, M.; Yoshioka, T.; Fujisaki, S.; Iwamoto, Y. Permeation Properties of Hydrogen and Water Vapor Through Porous Silica Membranes at High Temperatures. AIChE J. 2011, 57, 618–629. [Google Scholar] [CrossRef]
- Silva, A.M.; Rosa, R. Heat-Pumps for Efficient Energy Use in Industrial-Processes and for Process Integration. In Heat Pumps for Energy Efficiency and Environmental Progress; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 325–332. [Google Scholar]
- Khalifa, A.J.N. Evaluation of different hybrid power scenarios to Reverse Osmosis (RO) desalination units in isolated areas in Iraq. Energy Sustain. Dev. 2011, 15, 49–54. [Google Scholar] [CrossRef]
- Kaminski, W.; Marszalek, J.; Tomczak, E. Water desalination by pervaporation—Comparison of energy consumption. Desalination 2018, 433, 89–93. [Google Scholar] [CrossRef]
- Fernandez, E.S.; Geerdink, P.; Goetheer, E.L.V. Thermo pervap: The next step in energy efficient pervaporation. Desalination 2010, 250, 1053–1055. [Google Scholar] [CrossRef]
- Gude, G. Emerging Technologies for Sustainable Desalination Handbook; Elsevier: London, UK, 2018. [Google Scholar]
- Luis, P.; Amelio, A.; Vreysen, S.; Calabro, V.; Van der Bruggen, B. Simulation and environmental evaluation of process design: Distillation vs. hybrid distillation-pervaporation for methanol/tetrahydrofuran separation. Appl. Energy 2014, 113, 565–575. [Google Scholar] [CrossRef]
- Novita, F.J.; Lee, H.-Y.; Lee, M. Energy-efficient and ecologically friendly hybrid extractive distillation using a pervaporation system for azeotropic feed compositions in alcohol dehydration process. J. Taiwan Inst. Chem. Eng. 2018, in press. [Google Scholar] [CrossRef]
- Cai, D.; Hu, S.; Miao, Q.; Chen, C.J.; Chen, H.D.; Zhang, C.W.; Li, P.; Qin, P.Y.; Tan, T.W. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. Bioresour. Technol. 2017, 224, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.Q.; Xiao, Z.Y.; Li, M.H.; Li, S.Z. Ethanol fermentation coupled with pervaporation by energy efficient mechanical vapor compression. Energy Proc. 2017, 105, 933–938. [Google Scholar] [CrossRef]
Parameter | Seawater RO | Brackish RO | MED | EDR |
---|---|---|---|---|
Feed water salinity (mg/L TDS) | >32,000 | <32,000 | >35,000 | 3000–12,000 |
Product water salinity (mg/L TDS) | <500 | <200 | <10 | <10 |
Min. product water volume | 500 L/day | 500 L/day | 120 kL/day | 90 kL/day |
% recovery | ≤50 | ≥80 | 40–65 | >90 |
Energy required | Electrical energy | Electrical energy | Thermal energy or waste heat energy | Electrical energy |
Typical capital Cost (A$/kL/day of product water) | 1600–2500 | 600–1800 | 2500–3900 | 570–3250 |
Typical operating cost (A$/kL of product water) | 1.89–2.20 | 0.65–1.50 | Without waste heat: 1.8–2.80 With waste heat: 0.55–0.95 | 1.00–2.80 |
Disturbances | ev |
---|---|
Changes in cross-section area: | |
Sudden contraction | 0.45 (1–β) * |
Sudden expansion | |
Fittings and valves: | |
90° round elbows | 0.4–0.9 |
45° elbows | 0.3–0.4 |
Open globe valve | 6–10 |
Feed Temperature (°C) | Heating Energy (MJ/m3) | Cooling Energy (MJ/m3) | Electrical Energy (kWh/m3) | ||
---|---|---|---|---|---|
No Waste Heat | With Waste Heat | No Heat Recovery | 80% Heat Recovery | ||
21 | 2701 | 0 | 2462 | 526 | 0.25 |
32 | 4194 | 0 | 2460 | 562 | 0.19 |
40 | 5179 | 0 | 2457 | 586 | 0.15 |
50 | 6410 | 0 | 2452 | 614 | 0.13 |
60 | 7638 | 0 | 2447 | 644 | 0.10 |
65 | 8252 | 0 | 2443 | 656 | 0.10 |
Process | Thermal 1 (MJ/m3) | Electrical 1 (kWh/m3) |
---|---|---|
Multi stage flash (MSF) | 250–300 | 3.5–5 |
Multi effect distillation (MED) | 150–220 | 1.5–2.5 |
Vapor compression (VC)–thermal | 220–240 | 1.5–2 |
Vapor compression (VC)—mechanical | None | 11–12 |
RO—seawater | None | 2.2–3.7 |
RO—brackish water | None | 0.7–1.2 |
PV | ||
waste heat, no heat recovery | 2443–2462 | 0.1–0.25 |
waste heat, 80% heat recovery | 526–656 | 0.1–0.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Ng, D.; Hoang, M.; Zhang, J.; Gray, S. Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation. Int. J. Environ. Res. Public Health 2018, 15, 1913. https://doi.org/10.3390/ijerph15091913
Xie Z, Ng D, Hoang M, Zhang J, Gray S. Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation. International Journal of Environmental Research and Public Health. 2018; 15(9):1913. https://doi.org/10.3390/ijerph15091913
Chicago/Turabian StyleXie, Zongli, Derrick Ng, Manh Hoang, Jianhua Zhang, and Stephen Gray. 2018. "Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation" International Journal of Environmental Research and Public Health 15, no. 9: 1913. https://doi.org/10.3390/ijerph15091913
APA StyleXie, Z., Ng, D., Hoang, M., Zhang, J., & Gray, S. (2018). Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation. International Journal of Environmental Research and Public Health, 15(9), 1913. https://doi.org/10.3390/ijerph15091913