An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposures and Body Weight
Abstract
:1. Instruction
2. The Proposed Analytical Framework
2.1. Study Area and Data
2.2. Data Pre-Processing
2.3. Representing Dynamic Environmental Contexts Using the Environmental Context Cube
2.4. Capturing the Spatiotemporal Exposure Space with Individual Space-Time Tunnel
2.5. Measuring Food Environment Exposure with the Environmental Context Exposure Index
2.6. Comparing the Individual Food Environment Exposure Measurement with Other Methods
2.7. Analytical Approach
3. Results
3.1. Variation in Food Environment Exposure Measurements with Different Methods
3.2. Comparing the Performance of Food Environment Exposure Measurement Methods
3.3. Association between Food Environment Exposure and Overweight Status
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Methods | ECC(KD) | ECC(ISDD) | ECC(NEDD) | GTB | MCP | SDE1 | SDE2 |
---|---|---|---|---|---|---|---|
ECC(KD) | - | 0.407 * | 0.658 * | 0.438 * | 0.364 | 0.508 * | 0.476 * |
ECC(ISDD) | - | - | 0.642 * | 0.396 * | 0.198 | 0.358 | 0.057 |
ECC(NEDD) | - | - | - | 0.269 | 0.180 | 0.168 | −0.033 |
GTB | - | - | - | - | 0.629 * | 0.345 | 0.439 * |
MCP | - | - | - | - | - | 0.099 | 0.291 |
SDE1 | - | - | - | - | - | - | 0.699 * |
SDE2 | - | - | - | - | - | - | - |
Model a,b | Method | Spatial Resolution | Temporal Resolution | AIC | Nagelkerke R2 | LR χ2 | p-Value |
---|---|---|---|---|---|---|---|
KD100T10 | ECC (KD) | 100 m × 100 m | 10 min | 53.898 | 0.4677 | 19.872 | 0.00053 *** |
KD100T30 | 30 min | 53.879 | 0.4681 | 19.891 | 0.00052 *** | ||
KD150T10 | 150 m × 150 m | 10 min | 54.240 | 0.4612 | 19.529 | 0.00062 *** | |
KD150T30 | 30 min | 54.228 | 0.4615 | 19.542 | 0.00061 *** | ||
KD200T10 | 200 m × 200 m | 10 min | 54.198 | 0.4620 | 19.571 | 0.00061 *** | |
KD200T30 | 30 min | 54.223 | 0.4616 | 19.546 | 0.00061 *** | ||
ISDD100T10 | ECC (ISDD) | 100 m × 100 m | 10 min | 45.552 | 0.6113 | 28.217 | 0.00001 *** |
ISDD100T30 | 30 min | 48.567 | 0.5624 | 25.202 | 0.00005 *** | ||
ISDD150T10 | 150 m × 150 m | 10 min | 53.272 | 0.4794 | 20.498 | 0.00040 *** | |
ISDD150T30 | 30 min | 52.801 | 0.4881 | 20.969 | 0.00032 *** | ||
ISDD200T10 | 200 m × 200 m | 10 min | 53.124 | 0.4822 | 20.645 | 0.00037 *** | |
ISDD200T30 | 30 min | 54.073 | 0.4644 | 19.696 | 0.00057 *** | ||
NEDD100T10 | ECC (NEDD) | 100 m × 100 m | 10 min | 49.769 | 0.5420 | 24.001 | 0.00008 *** |
NEDD100T30 | 30 min | 53.597 | 0.4734 | 20.172 | 0.00046 *** | ||
NEDD150T10 | 150 m × 150 m | 10 min | 52.945 | 0.4855 | 20.825 | 0.00034 *** | |
NEDD150T30 | 30 min | 51.792 | 0.5064 | 21.977 | 0.00020 *** | ||
NEDD200T10 | 200 m × 200 m | 10 min | 54.132 | 0.4633 | 19.638 | 0.00059 *** | |
NEDD200T30 | 30 min | 54.199 | 0.4650 | 19.571 | 0.00061 *** | ||
M-GTB | GTB | - | - | 51.462 | 0.5124 | 22.308 | 0.00017 *** |
M-MCP | MCP | - | - | 52.390 | 0.4956 | 21.380 | 0.00027 *** |
M-SDE1 | SDE1 | - | - | 53.542 | 0.4744 | 20.228 | 0.00045 *** |
M-SDE2 | SDE2 | - | - | 51.753 | 0.5071 | 22.016 | 0.00020 *** |
Variables | Model a,b | β (95% CI) | OR (95% CI) | Model a,b | β (95% CI) | OR (95%) |
---|---|---|---|---|---|---|
Gender (Female) | KD100T10 | 2.56 *** (0.97, 4.63) | 12.97 *** (2.64, 102.57) | KD100T30 | 2.57 ** (0.97, 4.63) | 13.01 ** (2.65, 102.77) |
Age | 0.05 (−0.02, 0.14) | 1.05 (0.98, 1.14) | 0.05 (−0.02, 0.14) | 1.05 (0.98, 1.15) | ||
Education (≥College Degree) | −2.37 ** ( −4.46, −0.72) | 0.09 ** (0.01, 0.49) | −2.37 ** (−4.47, −0.73) | 0.09 ** (0.01, 0.48) | ||
Env. Exp. | 0.28 (−0.64, 1.27) | 0.09 (0.01, 0.49) | 0.29 (−0.64, 1.28) | 1.34 (0.53, 3.60) | ||
Gender (Female) | KD150T10 | 2.53 *** (0.91, 4.63) | 12.62 *** (2.49, 102.72) | KD150T30 | 2.54 ** (0.92, 4.64) | 12.73 ** (2.51, 103.68) |
Age | 0.05 (−0.02, 0.14) | 1.05 (0.98, 1.15) | 0.05 (−0.02, 0.14) | 1.05 (0.98, 1.14) | ||
Education (≥College Degree) | −2.43 *** (−4.56, −0.76) | 0.09 *** (0.01, 0.47) | −2.42 ** (−4.55, −0.76) | 0.09 ** (0.01, 0.47) | ||
Env. Exp. | 0.06 (−0.94, 1.04) | 1.06 (0.39, 2.82) | 0.08 (−0.90, 1.04) | 1.08 (0.41, 2.83) | ||
Gender (Female) | KD200T10 | 2.54 *** (0.94 4.62) | 12.68 *** (2.56, 101.55) | KD200T30 | 2.53 ** (0.94, 4.61 | 12.57 ** (2.56, 100.23) |
Age | 0.05 (−0.02, 0.13) | 1.05 (0.98, 1.14) | 0.05 (−0.02, 0.14) | 1.05 (0.98, 1.14) | ||
Education (≥College Degree) | −2.44 *** (−4.53, −0.83) | 0.09 *** (0.01, 0.44) | −2.45 ** (−4.53, −0.83) | 0.09 ** (0.01, 0.43) | ||
Env. Exp. | 0.11 (−0.84, 1.02) | 1.12 (0.43, 2.77) | 0.08 (−0.87, 0.99) | 1.09 (0.42, 2.69) | ||
Gender (Female) | ISDD100T10 | 3.61 *** (1.58, 6.37) | 36.83 *** (4.87, 584.49) | ISDD100T30 | 3.30 ** (1.41, 5.84) | 27.13 ** (4.10, 342.79) |
Age | 0.03 (−0.04, 0.12) | 1.04 (0.96, 1.13) | 0.03 (−0.05, 0.12) | 1.03 (0.95, 1.12) | ||
Education (≥College Degree) | −2.13 ** (−4.42, −0.31) | 0.12 ** (0.01, 0.74) | −1.93 * (−4.09, −0.19) | 0.14 * (0.02, 0.83) | ||
Env. Exp. | 1.92 ** (0.57, 3.81) | 6.81 ** (1.76, 45.3) | 1.47 * (0.24, 3.12) | 4.35 * (1.27, 22.62) | ||
Gender (Female) | ISDD150T10 | 2.90 *** (1.12, 5.23) | 18.14 *** (3.06, 186.21) | ISDD150T30 | 2.92 ** (1.17, 5.21) | 18.48 ** (3.21, 182.24) |
Age | 0.04 (−0.03, 0.13) | 1.04 (0.97, 1.14) | 0.04 (−0.03, 0.13) | 1.05 (0.97, 1.14) | ||
Education (≥College Degree) | −2.34 ** (−4.42, −0.71) | 0.10 ** (0.01, 0.49) | −2.36 * (−4.45, −0.72) | 0.09 * (0.01, 0.48) | ||
Env. Exp. | 0.45 (−0.44, 1.42) | 1.57 (0.64, 4.12) | 0.51 (−0.31, 1.47) | 1.67 (0.73, 4.36) | ||
Gender (Female) | ISDD200T10 | 2.68 *** (1.03, 4.86) | 14.61 *** (2.80, 129.08) | ISDD200T30 | 2.57 ** (0.96, 4.68) | 13.09 ** (2.62, 107.41) |
Age | 0.05 (−0.02, 0.13) | 1.05 (0.98, 1.14) | 0.05 (−0.02, 0.13) | 1.05 (0.98, 1.14) | ||
Education (≥College Degree) | −2.60 *** (−4.77, −0.94) | 0.07 *** (0.01, 0.39) | −2.47 ** (−4.55, −0.85) | 0.09 ** (0.01, 0.43) | ||
Env. Exp. | 0.49 (−0.41, 1.46) | 1.63 (0.66, 4.31) | 0.19 (−0.69, 1.11) | 1.21 (0.50, 3.04) | ||
Gender (Female) | NEDD100T10 | 2.81 *** (1.10, 5.04) | 16.55 *** (3.02, 154.12) | NEDD100T30 | 2.57 ** (0.98, 4.64) | 13.07 ** (2.66, 103.57) |
Age | 0.05 (−0.03, 0.13) | 1.05 (0.97, 1.14) | 0.05 (−0.02, 0.13) | 1.05 (0.98, 1.14) | ||
Education (≥College Degree) | −1.98 ** (−4.13, −0.26) | 0.14 ** (0.02, 0.77) | −2.20 * (−4.35, +0.49) | 0.11 * (0.01, 0.61) | ||
Env. Exp. | 1.14 * (0.08, 2.44) | 3.13 * (1.08, 11.47) | 0.37 (−0.51, 1.40) | 1.44 (0.60, 4.06) | ||
Gender (Female) | NEDD150T10 | 2.90 *** (1.15, 5.19) | 18.25 *** (3.17, 180.20) | NEDD150T30 | 3.00 ** (1.25, 5.29) | 20.09 ** (3.49, 199.09) |
Age | 0.04 (−0.04, 0.12) | 1.04 (0.96, 1.13) | 0.04 (−0.04, 0.12) | 1.04 (0.96, 1.13) | ||
Education (≥College Degree) | −2.19 (−2.29, −0.52) | 0.11 (0.01, 0.59) | −2.21 * (−4.31, −0.55) | 0.11 * (0.01, 0.58) | ||
Env. Exp. | 0.57 (−0.40, 1.62) | 1.76 (0.67, 5.06) | 0.72 (−0.17, 1.77) | 2.06 (0.84, 5.81) | ||
Gender (Female) | NEDD200T10 | 2.53 *** (0.94, 4.62) | 12.64 *** (2.57, 101.77) | NEDD200T30 | 2.50 ** (0.92, 4.57) | 12.22 ** (2.51, 96.49) |
Age | 0.05 (−0.02, 0.13) | 1.05 (0.98, 1.14) | 0.05 (−0.02, 0.14) | 1.06 (0.98, 1.15) | ||
Education (≥College Degree) | −2.46 *** (−4.54, −0.85) | 0.09 *** (0.01, 0.43) | −2.48 ** (−4.57, −0.86) | 0.08 ** (0.01, 0.42) | ||
Env. Exp. | 0.14 (−0.68, 0.93) | 1.15 (0.51, 2.54) | −0.09 (−0.89, 0.67) | 0.91 (0.41, 1.95) |
Variables. | Model a,b | β (95% CI) | OR (95% CI) |
---|---|---|---|
Gender (Female) | M-GTP | 3.12 *** (1.29, 5.62) | 22.68 *** (3.62, 275.66) |
Age | 0.08 (0.00, 0.17) | 1.08 (10.00, 1.19) | |
Education (≥College Degree) | −2.48 ** (−4.72, −0.76) | 0.08 ** (8.91, 0.47) | |
Env. Exp. | 0.29 (−0.05, 0.69) | 1.34 (9.52, 2.00) | |
Gender (Female) | M-MCP | 2.57 *** (0.95, 4.70) | 13.10 *** (2.60, 109.75) |
Age | 0.06 (−0.01, 0.15) | 1.06 (0.99, 1.17) | |
Education (≥College Degree) | −2.53 *** (−4.70, −0.86) | 0.08 *** (0.01, 0.42) | |
Env. Exp. | 0.56 (−0.23, 1.53) | 1.74 (0.79, 4.60) | |
Gender (Female) | M-SDE1 | 2.32 ** (0.66, 4.43) | 10.16 ** (1.93, 83.83) |
Age | 0.06 (−0.02, 0.14) | 1.06 (0.98, 1.15) | |
Education (≥College Degree) | −2.74 *** (−5.03, −0.99) | 0.06 *** (0.01, 0.37) | |
Env. Exp. | −0.24 (−0.90, 0.31) | 0.78 (0.40, 1.36) | |
Gender (Female) | M-SDE2 | 2.33 ** (0.64, 4.51) | 10.26 ** (1.90, 90.62) |
Age | 0.04 (−0.03, 0.13) | 1.05 (0.97, 1.14) | |
Education (≥College Degree) | −2.83 (−5.17, −1.07) | 0.06 (0.01, 0.34) | |
Env. Exp. | −0.57 (−1.36, 0.12) | 0.57 (0.26, 1.12) |
References
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; WHO Press: Geneva, Switzerland, 2016. [Google Scholar]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Clark, A.F.; Gilliland, J.A. Built environment influences of children’s physical activity: Examining differences by neighbourhood size and sex. Int. J. Environ. Res. Public Health 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Lee, K. Within what distance does “Greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int. J. Environ. Res. Public Health 2017, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.; Chai, T.Y.; Kwan, M.P. Suburbanization, daily lifestyle and space-behavior interaction: A study of suburban residents in Beijing, China. Acta Geogr. Sin. 2015, 70, 1271–1280. [Google Scholar]
- Eriksson, C.; Rosenlund, M.; Pershagen, G.; Hilding, A.; Östenson, C.G.; Bluhm, G. Aircraft Noise and Incidence of Hypertension. Epidemiology 2007, 18, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.M.; Kwan, M.P. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth: A review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Troped, P.J.; Wilson, J.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J. The Built Environment and Location-Based Physical Activity. Am. J. Prev. Med. 2010, 38, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lytle, L.A.; Sokol, R.L. Measures of the food environment: A systematic review of the field, 2007–2015. Health Place 2017, 44, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Gamba, R.J.; Schuchter, J.; Rutt, C.; Seto, E.Y.W. Measuring the Food Environment and its Effects on Obesity in the United States: A Systematic Review of Methods and Results. J. Community Health 2015, 40, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Morland, K.B.; Evenson, K.R. Obesity prevalence and the local food environment. Health Place 2009, 15, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, L.K.; Appel, L.J.; Franco, M.; Jones-Smith, J.C.; Nur, A.; Anderson, C.A.M. The relationship of the local food environment with obesity: A systematic review of methods, study quality, and results. Obesity 2015, 23, 1331–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspi, C.E.; Sorensen, G.; Subramanian, S.V.; Kawachi, I. The local food environment and diet: A systematic review. Health Place 2012, 18, 1172–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koohsari, M.J.; Mavoa, S.; Villianueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Lachowycz, K.; Jones, A.P.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. What can global positioning systems tell us about the contribution of different types of urban greenspace to children’s physical activity? Health Place 2012, 18, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Shareck, M.; Kestens, Y.; Vallée, J.; Datta, G.; Frohlich, K.L.; Vallee, J.; Datta, G.; Frohlich, K.L. The added value of accounting for activity space when examining the association between tobacco retailer availability and smoking among young adults. Tob. Control 2015, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lipperman-Kreda, S.; Morrison, C.; Grube, J.W.; Gaidus, A. Youth activity spaces and daily exposure to tobacco outlets. Health Place 2015, 34, 30–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, M.P.; Kenda, L.L.; Wewers, M.E.; Ferketich, A.K.; Klein, E.G. Sociogeographic context, protobacco advertising, and smokeless tobacco usage in the Appalachian Region of Ohio (USA). In Proceedings of the International Medical Geography Symposium, Durham, UK, 11–15 July 2011. [Google Scholar]
- Epstein, D.H.; Tyburski, M.; Craig, I.M.; Phillips, K.A.; Jobes, M.L.; Vahabzadeh, M.; Mezghanni, M.; Lin, J.L.; Furr-Holden, C.D.M.; Preston, K.L. Real-time tracking of neighborhood surroundings and mood in urban drug misusers: Application of a new method to study behavior in its geographical context. Drug Alcohol Depend. 2014, 134, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seliske, L.M.; Pickett, W.; Boyce, W.F.; Janssen, I. Association between the food retail environment surrounding schools and overweight in Canadian youth. Public Health Nutr. 2009, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.N.; Hayes, M. V Effects of neighbourhood income on reported body mass index: An eight year longitudinal study of Canadian children. BMC Public Health 2008, 8, 16. [Google Scholar] [CrossRef]
- Chaix, B. Geographic Life Environments and Coronary Heart Disease: A Literature Review, Theoretical Contributions, Methodological Updates, and a Research Agenda. Annu. Rev. Public Health 2009, 30, 81–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millstein, R.A.; Yeh, H.C.; Brancati, F.L.; Batts-Turner, M.; Gary, T.L. Food availability, neighborhood socioeconomic status, and dietary patterns among blacks with type 2 diabetes mellitus. Medscape J. Med. 2009, 11, 15. [Google Scholar] [PubMed]
- Andersen, A.F.; Carson, C.; Watt, H.C.; Lawlor, D.A.; Avlund, K.; Ebrahim, S. Life-course socio-economic position, area deprivation and type 2 diabetes: Findings from the British women’s heart and health study. Diabet. Med. 2008, 25, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, B.; Clarke, P. Space Meets Time: Integrating Temporal and Contextual Influences on Mental Health in Early Adulthood. Am. Sociol. Rev. 2016, 68, 680–706. [Google Scholar] [CrossRef]
- Curtis, S. Space, Place and Mental Health; Routledge: London, UK, 2010; ISBN 0754673316. [Google Scholar]
- Stigsdotter, U.K.; Ekholm, O.; Schipperijn, J.; Toftager, M.; Kamper-Jorgensen, F.; Randrup, T.B. Health promoting outdoor environments-Associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey. Scand. J. Soc. Med. 2010, 38, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.N.; Light, M.T. The home foreclosure crisis and rising suicide rates, 2005 to 2010. Am. J. Public Health 2014, 104, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Kestens, Y.; Lebel, A.; Chaix, B.; Clary, C.; Daniel, M.; Pampalon, R.; Theriault, M.; Subramanian, S.V. Association between activity space exposure to food establishments and individual risk of overweight. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auchincloss, A.H. Neighborhood Resources for Physical Activity and Healthy Foods and Incidence of Type 2 Diabetes Mellitus. Arch. Intern. Med. 2009, 169, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PAGAC Physical Activity Guidelines Advisory Committee Report. 2008. Available online: https://health.gov/paguidelines/report/pdf/CommitteeReport.pdf (accessed on 30 August 2018).
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Inagami, S.; Cohen, D.A.; Brown, A.F.; Asch, S.M. Body mass index, neighborhood fast food and restaurant concentration, and car ownership. J. Urban Health 2009, 86, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Dominick, C.; Swinburn, B. The healthy food environment policy index: Findings of an expert panel in New Zealand. Bull. World Health Organ. 2015, 93, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Committee on Accelerating Progress in Obesity Prevention. Accelerating Progress in Obesity Accelerating Progress in Obesity Prevention: Solving the Weight of the Nation; National Academies Press: Washington, DC, USA, 2012; ISBN 0309221544. [Google Scholar]
- Reisig, V.; Hobbiss, A. Food deserts and how to tackle them: A study of one city’s approach. Health Educ. J. 2000, 59, 137–149. [Google Scholar] [CrossRef]
- Chen, X.; Kwan, M.P. Contextual Uncertainties, Human Mobility, and Perceived Food Environment: The Uncertain Geographic Context Problem in Food Access Research. Am. J. Public Health 2015, 105, 1734–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holsten, J.E. Obesity and the community food environment: A systematic review. Public Health Nutr. 2009, 12, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Maddock, J. The relationship between obesity and the prevalence of fast food restaurants: State-level analysis. Am. J. Health Promot. 2004, 19, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. The role of local food availability in explaining obesity risk among young school-aged children. Soc. Sci. Med. 2012, 74, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Jilcott, S.B.; Wade, S.; McGuirt, J.T.; Wu, Q.; Lazorick, S.; Moore, J.B. The association between the food environment and weight status among eastern North Carolina youth. Public Health Nutr. 2011, 14, 1610–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zick, C.D.; Smith, K.R.; Fan, J.X.; Brown, B.B.; Yamada, I.; Kowaleski-Jones, L. Running to the Store? The relationship between neighborhood environments and the risk of obesity. Soc. Sci. Med. 2009, 69, 1493–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.; Carpenter, C. Proximity of fast-food restaurants to schools and adolescent obesity. Am. J. Public Health 2009, 99, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Harmer, P.; Cardinal, B.J.; Bosworth, M.; Johnson-Shelton, D. Obesity and the built environment: Does the density of neighborhood fast-food outlets matter? Am. J. Health Promot. 2009, 23, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, R.W.; Baxter, J.; McGuire, M.; Linde, J. Are fast food restaurants an environmental risk factor for obesity? Int. J. Behav. Nutr. Phys. Act. 2006, 3, 1. [Google Scholar]
- Dunn, R.A.; Sharkey, J.R.; Horel, S. The effect of fast-food availability on fast-food consumption and obesity among rural residents: An analysis by race/ethnicity. Econ. Hum. Biol. 2012, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Black, J.L.; Macinko, J.; Dixon, L.B.; Fryer, G.E. Neighborhoods and obesity in New York City. Health Place 2010, 16, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.P. The Limits of the Neighborhood Effect: Contextual Uncertainties in Geographic, Environmental Health, and Social Science Research. Ann. Am. Assoc. Geogr. 2018, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Lee, K.; Kwan, M.P. Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity. ISPRS Int. J. Geo-Inf. 2018, 7. [Google Scholar] [CrossRef]
- Kwan, M.P.; Wang, J.; Tyburski, M.; Epstein, D.H.; Kowalczyk, W.J.; Preston, K.L. Uncertainties in the geographic context of health behaviors: A study of substance users’ exposure to psychosocial stress using GPS data. Int. J. Geogr. Inf. Sci. 2018, 1–20. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Scott, D. Understanding the impact of the modifiable areal unit problem on the relationship between active travel and the built environment. Urban Stud. 2014, 51, 284–299. [Google Scholar] [CrossRef]
- Feng, J.; Glass, T.A.; Curriero, F.C.; Stewart, W.F.; Schwartz, B.S. The built environment and obesity: A systematic review of the epidemiologic evidence. Health Place 2010, 16, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Chaix, B. The influence of geographic life environments on cardiometabolic risk factors: A systematic review, a methodological assessment and a research agenda. Obes. Rev. 2011, 12, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Basta, L.A.; Richmond, T.S.; Wiebe, D.J. Neighborhoods, daily activities, and measuring health risks experienced in urban environments. Soc. Sci. Med. 2010, 71, 1943–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiehe, S.E.; Hoch, S.C.; Liu, G.C.; Carroll, A.E.; Wilson, J.S.; Fortenberry, J.D. Adolescent Travel Patterns: Pilot Data Indicating Distance from Home Varies by Time of Day and Day of Week. J. Adolesc. Health 2008, 42, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.P. From place-based to people-based exposure measures. Soc. Sci. Med. 2009, 69, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.P. Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility: Space-time integration in geography and GIScience. Ann. Assoc. Am. Geogr. 2013, 103, 1078–1086. [Google Scholar] [CrossRef]
- Cummins, S. Commentary: Investigating neighbourhood effects on health—Avoiding the ‘local trap’. Int. J. Epidemiol. 2007, 36, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.P. The Uncertain Geographic Context Problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Kwan, M. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Almanza, E.; Jerrett, M.; Dunton, G.; Seto, E.; Ann Pentz, M. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place 2012, 18, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Méline, J.; Duncan, S.; Merrien, C.; Karusisi, N.; Perchoux, C.; Lewin, A.; Labadi, K.; Kestens, Y. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, A step backward for causal inference? Health Place 2013, 21, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Ni Mhurchu, C. Global positioning system: A new opportunity in physical activity measurement. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Laatikainen, T.E.; Hasanzadeh, K.; Kyttä, M. Capturing exposure in environmental health research: Challenges and opportunities of different activity space models. Int. J. Health Geogr. 2018, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kwan, M.P.; Chai, Y. An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago. Int. J. Environ. Res. Public Health 2018, 15, 703. [Google Scholar] [CrossRef] [PubMed]
- Gulliver, J.; Briggs, D.J. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ. Res. 2005, 97, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Franklin County Community Health Needs Assessment Steering Committee Franklin County Health Map 2013. 2013. Available online: https://www.columbus.gov/uploadedfiles%5CPublic_Health%5CContent_Editors%5CCenter_for_Assessment_and_Preparedness%5CAssessment_and_Surveillance%5CReports_and_Files%5CCPHHealthMap%20Revised_1.3.2013Final%20rev%2011713.pdf (accessed on 30 August 2018).
- Wiehe, S.E.; Carroll, A.E.; Liu, G.C.; Haberkorn, K.L.; Hoch, S.C.; Wilson, J.S.; Fortenberry, J.D. Using GPS-enabled cell phones to track the travel patterns of adolescents. Int. J. Health Geogr. 2008, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Wang, F. Geographic disparities in accessibility to food stores in southwest Mississippi. Environ. Plan. B Plan. Des. 2011, 38, 659–678. [Google Scholar] [CrossRef]
- Páez, A.; Mercado, R.G.; Farber, S.; Morency, C.; Roorda, M. Relative Accessibility Deprivation Indicators for Urban Settings: Definitions and Application to Food Deserts in Montreal. Urban Stud. 2010, 47, 1415–1438. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, M.; Wang, F. Multilevel built environment features and individual odds of overweight and obesity in Utah. Appl. Geogr. 2015, 60, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Brown, A.; Goodchild, M. Does distance decay modelling of supermarket accessibility predict fruit and vegetable intake by individuals in a large metropolitan area? J. Health Care Poor Underserved 2013, 24, 172–185. [Google Scholar] [CrossRef]
- Lamichhane, A.P.; Puett, R.; Porter, D.E.; Bottai, M.; Mayer-Davis, E.J.; Liese, A.D. Associations of built food environment with body mass index and waist circumference among youth with diabetes. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Roux, A.V.D.; Auchincloss, A.; Evenson, K.R.; Kaufman, J.; Mujahid, M.; Williams, K. Home and work neighbourhood environments in relation to body mass index: The Multi-Ethnic Study of Atherosclerosis (MESA). J. Epidemiol. Community Health 2013, 67, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Clark, J. Measuring space-time access to food retailers: A case of temporal access disparity in Franklin County, Ohio. Prof. Geogr. 2016, 68, 175–188. [Google Scholar] [CrossRef]
- Kwan, M.P. Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transp. Res. Part C Emerg. Technol. 2000, 8, 185–203. [Google Scholar] [CrossRef]
- Rundle, A.; Neckerman, K.M.; Freeman, L.; Lovasi, G.S.; Purciel, M.; Quinn, J.; Richards, C.; Sircar, N.; Weiss, C. Neighborhood food environment and walkability predict obesity in New York City. Environ. Health Perspect. 2009, 117, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Rainham, D.; McDowell, I.; Krewski, D.; Sawada, M. Conceptualizing the healthscape: Contributions of time geography, location technologies and spatial ecology to place and health research. Soc. Sci. Med. 2010, 70, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Shannon, G.W.; Spurlock, C.W. Urban Ecological Containers, Environmental Risk Cells, and the Use of Medical Services. Econ. Geogr. 1976, 52, 171–180. [Google Scholar] [CrossRef]
- Arcury, T.A.; Gesler, W.M.; Preisser, J.S.; Sherman, J.; Spencer, J.; Perin, J. The effects of geography and spatial behavior on health care utilization among the residents of a rual region. Health Serv. Res. 2005, 40, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Crawford, T.W.; Jilcott Pitts, S.B.; McGuirt, J.T.; Keyserling, T.C.; Ammerman, A.S. Conceptualizing and comparing neighborhood and activity space measures for food environment research. Health Place 2014, 30, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenk, S.N.; Schulz, A.J.; Matthews, S.A.; Odoms-Young, A.; Wilbur, J.E.; Wegrzyn, L.; Gibbs, K.; Braunschweig, C.; Stokes, C. Activity space environment and dietary and physical activity behaviors: A pilot study. Health Place 2011, 17, 1150–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Kwan, M.P.; Zhou, S. The uncertain geographic context problem in the analysis of the relationships between obesity and the built environment in Guangzhou. Int. J. Environ. Res. Public Health 2018, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mellor, J.M.; Dolan, C.B.; Rapoport, R.B. Child body mass index, obesity, and proximity to fast food restaurants. Int. J. Pediatr. Obes. 2011, 6, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.A. The salience of neighborhood: Some lessons from sociology. Am. J. Prev. Med. 2008, 34, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B. Geographic life environments and coronary heart disease: A literature review, theoretical contributions, methodological updates, and a research agenda. Annu. Rev. Public Health 2009, 30, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.P. The Neighborhood Effect Averaging Problem (NEAP): An Elusive Confounder of the Neighborhood Effect. Int. J. Environ. Res. Public Health 2018, 15, 1841. [Google Scholar] [CrossRef] [PubMed]
- Apparicio, P.; Gelb, J.; Dubé, A.S.; Kingham, S.; Gauvin, L.; Robitaille, É. The approaches to measuring the potential spatial access to urban health services revisited: Distance types and aggregation-error issues. Int. J. Health Geogr. 2017, 16, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.A.; Han, B.; Isacoff, J.; Shulaker, B.; Williamson, S.; Marsh, T.; McKenzie, T.L.; Weir, M.; Bhatia, R. Impact of park renovations on park use and park-based physical activity. J. Phys. Act. Health 2015, 12, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Wen, F.; Hillier, A.; Cohen, D.A. Assessing the contribution of parks to physical activity using GPS and accelerometry. Med. Sci. Sports Exerc. 2013, 45, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
Socio-Demographic Variables | Percentage | |
---|---|---|
Gender | Male | 39.13% |
Female | 60.87% | |
Age (years old) | 18–30 | 56.52% |
31–65 | 41.30% | |
65+ | 2.18% | |
Education | With College Degree or Higher (≥College Degree) | 56.52% |
With High School Degree or Lower (<College Degree) | 43.48% | |
OverweightStatus | Overweight | 50% |
Non-overweight | 50% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Kwan, M.-P. An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposures and Body Weight. Int. J. Environ. Res. Public Health 2018, 15, 2022. https://doi.org/10.3390/ijerph15092022
Wang J, Kwan M-P. An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposures and Body Weight. International Journal of Environmental Research and Public Health. 2018; 15(9):2022. https://doi.org/10.3390/ijerph15092022
Chicago/Turabian StyleWang, Jue, and Mei-Po Kwan. 2018. "An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposures and Body Weight" International Journal of Environmental Research and Public Health 15, no. 9: 2022. https://doi.org/10.3390/ijerph15092022
APA StyleWang, J., & Kwan, M. -P. (2018). An Analytical Framework for Integrating the Spatiotemporal Dynamics of Environmental Context and Individual Mobility in Exposure Assessment: A Study on the Relationship between Food Environment Exposures and Body Weight. International Journal of Environmental Research and Public Health, 15(9), 2022. https://doi.org/10.3390/ijerph15092022