Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Prenatal CO Exposures
2.3. Cord Blood Sampling and DNA Extraction
2.4. MtDNAcn Measurement
2.5. Birth Outcomes
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Exposure-Response Associations between Average Prenatal CO and CBMC mtDNAcn
3.3. Effect of the LPG and BioLite Interventions on CBMC mtDNAcn
3.4. Associations between CBMC mtDNAcn and Birth Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
GRAPHS Study Arm | N | Multivariable Model † | Sex-stratified Analyses | ||||
---|---|---|---|---|---|---|---|
Boys | Girls | ||||||
(SE) | p-Value | (SE) | p-Value | (SE) | p-Value | ||
LPG | 28 | Referent | NA | Referent | NA | Referent | NA |
BioLite Stove | 35 | −18.67 (10.51) | 0.07 | −38.40 (16.11) | 0.02 | −6.46 (20.16) | 0.75 |
3-Stone Fire | 57 | −19.34 (9.72) | 0.049 | −30.65 (14.46) | 0.04 | −13.76 (17.63) | 0.44 |
References
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Kammen, D.M. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: Knowledge, gaps, and data needs. Environ. Health Perspect. 2002, 110, 1057. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Apte, K.; Salvi, S. Household air pollution and its effects on health. F1000Research 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.E.; Billheimer, D.; Jenkins, I.C.; Lu, Z.J.; Stern, D.A.; Gerald, L.B.; Carr, T.F.; Guerra, S.; Morgan, W.J.; Wright, A.L.; et al. A distinct low lung function trajectory from childhood to the fourth decade of life. Am. J. Respir. Crit. Care Med. 2016, 194, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Aasvang, G.M.; Bjertness, E.; Htet, A.S.; Savic, M.; Vollset, S.E.; Norheim, O.F.; Weiderpass, E. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Gordon, S.B.; Bruce, N.G.; Grigg, J.; Hibberd, P.L.; Kurmi, O.P.; Lam, K.B.; Mortimer, K.; Asante, K.P.; Balakrishnan, K.; Balmes, J.; et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2014, 2, 823–860. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 327, 1077–1081. [Google Scholar] [CrossRef]
- Miller, M.D.; Marty, M.A. Impact of environmental chemicals on lung development. Environ. Health Perspect. 2010, 118, 1155. [Google Scholar] [CrossRef]
- Pope, D.P.; Mishra, V.; Thompson, L.; Siddiqui, A.R.; Rehfuess, E.A.; Weber, M.; Bruce, N.G. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol. Rev. 2010, 32, 70–81. [Google Scholar] [CrossRef]
- Wylie, B.J.; Coull, B.A.; Hamer, D.H.; Singh, M.P.; Jack, D.; Yeboah-Antwi, K.; Sabin, L.; Singh, N.; MacLeod, W.B. Impact of biomass fuels on pregnancy outcomes in central East India. Environ. Health 2014, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victora, C.G.; Barros, F.C.; Vaughan, J.P.; Teixeira, A.M. Birthweight and infant mortality: A longitudinal study of 5914 Brazilian children. Int. J. Epidemiol. 1987, 16, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Mathews, K.H.; Pulanić, D.; Falconer, R.; Rudan, I.; Campbell, H.; Nair, H. Risk factors for severe acute lower respiratory infections in children—A systematic review and meta-analysis. Croat. Med. J. 2013, 54, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Walter, E.C.; Ehlenbach, W.J.; Hotchkin, D.L.; Chien, J.W.; Koepsell, T.D. Low birth weight and respiratory disease in adulthood: A population-based case-control study. Am. J. Respir. Crit. Care Med. 2009, 180, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Forsen, T.; Tuomilehto, J.; Osmond, C.; Barker, D. Fetal and childhood growth and hypertension in adult life. Hypertension 2000, 36, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.G.; Kaali, S.; Quinn, A.; Delimini, R.; Burkart, K.; Opoku-Mensah, J.; Wylie, B.J.; Yawson, A.K.; Kinney, P.L.; Ae-Ngibise, K.A.; et al. Prenatal household air pollution is associated with impaired infant lung function with sex-specific effects: Evidence from GRAPHS, a cluster randomized cookstove intervention trial. Am. J. Respir. Crit. Care Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mondal, N.K.; Saha, H.; Mukherjee, B.; Tyagi, N.; Ray, M.R. Inflammation, oxidative stress, and higher expression levels of Nrf2 and NQO1 proteins in the airways of women chronically exposed to biomass fuel smoke. Mol. Cell. Biochem. 2018, 447, 63–76. [Google Scholar] [CrossRef]
- Rylance, J.; Fullerton, D.G.; Scriven, J.; Aljurayyan, A.N.; Mzinza, D.; Barrett, S.; Wright, A.K.; Wootton, D.G.; Glennie, S.J.; Baple, K.; et al. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 52, 584–593. [Google Scholar] [CrossRef]
- Chahine, T.; Baccarelli, A.; Litonjua, A.; Wright, R.O.; Suh, H.; Gold, D.R.; Sparrow, D.; Vokonas, P.; Schwartz, J. Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ. Health Perspect. 2007, 115, 1617. [Google Scholar] [CrossRef]
- Byun, H.M.; Baccarelli, A.A. Environmental exposure and mitochondrial epigenetics: Study design and analytical challenges. Hum. Genet. 2014, 133, 247–257. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, X.; Dioni, L.; Barretta, F.; Dou, C.; Zheng, Y.; Hoxha, M.; Bertazzi, P.A.; Schwartz, J.; Wu, S.; et al. Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: A repeated-measure study. Part. Fibre Toxicol. 2013, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Clemente, D.B.; Casas, M.; Vilahur, N.; Begiristain, H.; Bustamante, M.; Carsin, A.E.; Fernández, M.F.; Fierens, F.; Gyselaers, W.; Iñiguez, C.; et al. Prenatal ambient air pollution, placental mitochondrial DNA content, and birth weight in the INMA (Spain) and ENVIRONAGE (Belgium) birth cohorts. Environ. Health Perspect. 2016, 124, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.J.; Just, A.C.; Guerra, M.S.; Kloog, I.; Hsu, H.H.; Brennan, K.J.; García, A.M.; Coull, B.; Wright, R.J.; Rojo, M.M.; et al. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environ. Int. 2017, 98, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westbrook, D.G.; Anderson, P.G.; Pinkerton, K.E.; Ballinger, S.W. Perinatal tobacco smoke exposure increases vascular oxidative stress and mitochondrial damage in non-human primates. Cardiovasc. Toxicol. 2010, 10, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Clifton, V.L. Sex and the human placenta: Mediating differential strategies of fetal growth and survival. Placenta 2010, 31, S33–S39. [Google Scholar] [CrossRef] [PubMed]
- Jack, D.W.; Asante, K.P.; Wylie, B.J.; Chillrud, S.N.; Whyatt, R.M.; Quinn, A.K.; Yawson, A.K.; Boamah, E.A.; Agyei, O.; Mujtaba, M.; et al. Ghana randomized air pollution and health study (GRAPHS): Study protocol for a randomized controlled trial. Trials 2015, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Martinez, R.; Marti, R.; García-Arumí, E. Quantification of mitochondrial DNA copy number: Pre-analytical factors. Mitochondrion 2009, 9, 242–246. [Google Scholar] [CrossRef]
- Boamah, E.A.; Asante, K.P.; Ae-Ngibise, K.A.; Kinney, P.L.; Jack, D.W.; Manu, G.; Azindow, I.T.; Owusu-Agyei, S.; Wylie, B.J. Gestational age assessment in the Ghana Randomized Air Pollution and Health Study (GRAPHS): Ultrasound capacity building, fetal biometry protocol development, and ongoing quality control. JMIR Res. Protoc. 2014, 3, e77. [Google Scholar] [CrossRef]
- Janssen, B.G.; Munters, E.; Pieters, N.; Smeets, K.; Cox, B.; Cuypers, A.; Fierens, F.; Penders, J.; Vangronsveld, J.; Gyselaers, W.; et al. Placental mitochondrial DNA content and particulate air pollution during in utero life. Environ. Health Perspect. 2012, 120, 1346. [Google Scholar] [CrossRef]
- Wong, J.Y.; Hu, W.; Downward, G.S.; Seow, W.J.; Bassig, B.A.; Ji, B.T.; Wei, F.; Wu, G.; Li, J.; He, J.; et al. Personal exposure to fine particulate matter and benzo [a] pyrene from indoor air pollution and leukocyte mitochondrial DNA copy number in rural China. Carcinogenesis 2017, 38, 893–899. [Google Scholar] [CrossRef]
- Pieters, N.; Koppen, G.; Smeets, K.; Napierska, D.; Plusquin, M.; De Prins, S.; Van De Weghe, H.; Nelen, V.; Cox, B.; Cuypers, A.; et al. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: From a population enquiry to cell culture. PLoS ONE 2013, 8, e63208. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhu, Z.Z.; Zhang, X.; Nordio, F.; Bonzini, M.; Schwartz, J.; Hoxha, M.; Dioni, L.; Marinelli, B.; Pegoraro, V.; et al. Airborne particulate matter and mitochondrial damage: A cross-sectional study. Environ. Health 2010, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Guarente, L. Mitochondria—A nexus for aging, calorie restriction, and sirtuins? Cell 2008, 132, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Ashar, F.N.; Zhang, Y.; Longchamps, R.J.; Lane, J.; Moes, A.; Grove, M.L.; Mychaleckyj, J.C.; Taylor, K.D.; Coresh, J.; Rotter, J.I.; et al. Association of Mitochondrial DNA Copy Number with Cardiovascular Disease. JAMA Cardiol. 2017, 2, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Clemente, D.B.; Casas, M.; Janssen, B.G.; Lertxundi, A.; Santa-Marina, L.; Iñiguez, C.; Llop, S.; Sunyer, J.; Guxens, M.; Nawrot, T.S.; et al. Prenatal ambient air pollution exposure, infant growth and placental mitochondrial DNA content in the INMA birth cohort. Environ. Res. 2017, 157, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, T.F.; Sookoian, S.; Dieuzeide, G.; García, S.I.; Gemma, C.; González, C.D.; Pirola, C.J. A decreased mitochondrial DNA content is related to insulin resistance in adolescents. Obesity 2008, 16, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhou, Y.; Shi, Y.; Ning, L.; Yang, Y.; Wei, X.; Zhang, N.; Hao, X.; Niu, R. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life 2007, 59, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrasher, J.D. Are Chlorinated Pesticides a Causation in Maternal Mitochondrial DNA (mtDNA) Mutations? Taylor & Francis: Abingdon, UK, 2000. [Google Scholar]
- Brunst, K.J.; Sanchez Guerra, M.; Gennings, C.; Hacker, M.; Jara, C.; Bosquet Enlow, M.; Wright, R.O.; Baccarelli, A.; Wright, R.J. Maternal lifetime stress and prenatal psychological functioning and decreased placental mitochondrial DNA copy number in the PRISM study. Am. J. Epidemiol. 2017, 186, 1227–1236. [Google Scholar] [CrossRef]
- Brunst, K.J.; Sanchez-Guerra, M.; Chiu, Y.H.; Wilson, A.; Coull, B.A.; Kloog, I.; Schwartz, J.; Brennan, K.J.; Enlow, M.B.; Wright, R.O.; et al. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. Environ. Int. 2018, 112, 49–58. [Google Scholar] [CrossRef]
- Shaughnessy, D.T.; McAllister, K.; Worth, L.; Haugen, A.C.; Meyer, J.N.; Domann, F.E.; Van Houten, B.; Mostoslavsky, R.; Bultman, S.J.; Baccarelli, A.A.; et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 2014, 122, 1271. [Google Scholar] [CrossRef]
- Minghetti, L.; Greco, A.; Zanardo, V.; Suppiej, A. Early-life sex-dependent vulnerability to oxidative stress: The natural twining model. J. Matern.-Fetal Neonatal Med. 2013, 26, 259–262. [Google Scholar] [CrossRef] [PubMed]
- DiPietro, J.A.; Voegtline, K.M. The gestational foundation of sex differences in development and vulnerability. Neuroscience 2017, 342, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.H.; Hsu, H.H.; Coull, B.A.; Bellinger, D.C.; Kloog, I.; Schwartz, J.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ. Int. 2016, 87, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Hsu, H.H.; Chiu, Y.H.; Bose, S.; Rosa, M.J.; Kloog, I.; Wilson, A.; Schwartz, J.; Cohen, S.; Coull, B.A.; et al. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J. Allergy Clin. Immunol. 2018, 141, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Sex-specific placental responses in fetal development. Endocrinology 2015, 156, 3422–3434. [Google Scholar] [CrossRef] [PubMed]
- O’connell, B.A.; Moritz, K.M.; Walker, D.W.; Dickinson, H. Sexually dimorphic placental development throughout gestation in the spiny mouse (Acomys cahirinus). Placenta 2013, 34, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Alwasel, S.H.; Harrath, A.H.; Aldahmash, W.M.; Abotalib, Z.; Nyengaard, J.R.; Osmond, C.; Dilworth, M.R.; Al Omar, S.Y.; Jerah, A.A.; Barker, D.J. Sex differences in regional specialisation across the placental surface. Placenta 2014, 35, 365–369. [Google Scholar] [CrossRef]
- Zhang, J.; Nuebel, E.; Daley, G.Q.; Koehler, C.M.; Teitell, M.A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11, 589–595. [Google Scholar] [CrossRef]
Categorical Variables | All Children (n = 120) | % | Boys (n = 63) | % | Girls (n = 57) | % |
---|---|---|---|---|---|---|
Wealth index | ||||||
1 (Very poor) | 27 | 22.5 | 15 | 23.8 | 12 | 21.1 |
2 | 26 | 21.7 | 12 | 19 | 14 | 24.6 |
3 | 22 | 18.3 | 11 | 17.5 | 11 | 19.3 |
4 | 18 | 15 | 9 | 14.3 | 9 | 15.8 |
5 (Least poor) | 27 | 22.5 | 16 | 25.4 | 11 | 19.3 |
Maternal education | ||||||
None | 43 | 35.8 | 20 | 31.7 | 23 | 40.4 |
1–6 years (Primary school) | 32 | 26.7 | 21 | 33.3 | 11 | 19.3 |
>9 years (Secondary school) | 45 | 37.5 | 22 | 34.9 | 23 | 40.4 |
Ethnicity | ||||||
Akan | 22 | 18.3 | 10 | 15.9 | 12 | 21.1 |
Dagarti | 34 | 28.3 | 18 | 28.6 | 16 | 28.1 |
Konkonba | 19 | 15.8 | 7 | 11.1 | 12 | 21.1 |
Other (Gonja, Sisala, Mo, Fulani, Bimoba, Ga, or Banda) | 45 | 37.5 | 28 | 44.4 | 17 | 29.8 |
Continuous variables (Median, IQR) | Median | IQR | Median | IQR | Median | IQR |
Mitochondrial DNA copy number % | 68.4 | 40.6–87.8 | 68.5 | 52.8–85.1 | 67.8 | 8.5–87.7 |
Maternal age (years) | 25 | 22–33 | 24.5 | 21–32 | 28 | 23–33.3 |
Maternal height (cm) | 155 | 151–160 | 155 | 150–160 | 155 | 152–160 |
Maternal weight (kg) | 54.1 | 51–60 | 56 | 51–61.8 | 54 | 50–59.3 |
Gestational age at delivery (weeks) | 39.7 | 39.3–40.9 | 39.8 | 39.3–40.7 | 40 | 39.3–41.2 |
Infant birth weight (kg) | 3.02 | 2.71–3.21 | 3.03 | 2.79–3.21 | 3.02 | 2.61–3.22 |
Infant head circumference (cm) | 33.9 | 32.4–35.0 | 34.0 | 32.4–33.5 | 33.5 | 32.3–35.0 |
Exposure | N | Univariate Model | Multivariable Model † | ||
---|---|---|---|---|---|
(SE) | p-Value | (SE) | p-Value | ||
Prenatal CO± | 120 | −1.78 (2.53) | 0.48 | −2.15 (2.68) | 0.43 |
GRAPHS Study Arm | |||||
3-Stone Fire | 57 | Referent | Referent | ||
BioLite Stove | 35 | 9.61 (8.25) | 0.25 | 5.92 (9.00) | 0.51 |
LPG | 28 | 20.75 (8.78) | 0.02 | 19.34 (9.72) | 0.049 |
Exposure | N | Boys | N | Girls | |||
---|---|---|---|---|---|---|---|
(SE) | p-Value | (SE) | p-Value | ||||
Prenatal CO | 63 | −14.84 (6.41) | 0.03 | 57 | 0.67 (3.33) | 0.84 | |
GRAPHS Study Arm | |||||||
3-Stone Fire | 30 | Referent | NA | 27 | Referent | NA | |
BioLite Stove | 17 | −7.75 (11.63) | 0.51 | 18 | 7.30 (15.37) | 0.64 | |
LPG | 16 | 30.65 (14.46) | 0.04 | 12 | 13.76 (17.63) | 0.44 |
Birth Outcome | Univariate Model | Multivariable Model | |||
---|---|---|---|---|---|
(SE) | p-Value | (SE) | p-Value | ||
Birth weight | 0.001 (0.001) | 0.20 | 0.0001 (0.001) | 0.89 | |
Head Circumference | 0.014 (0.006) | 0.02 | 0.013 (0.006) | 0.03 | |
Gestational Age at Delivery | 0.034 (0.019) | 0.07 | 0.042 (0.019) | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaali, S.; Jack, D.W.; Delimini, R.; Hu, L.; Burkart, K.; Opoku-Mensah, J.; Quinn, A.; Ae-Ngibise, K.A.; Wylie, B.J.; Boamah-Kaali, E.A.; et al. Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. Int. J. Environ. Res. Public Health 2019, 16, 26. https://doi.org/10.3390/ijerph16010026
Kaali S, Jack DW, Delimini R, Hu L, Burkart K, Opoku-Mensah J, Quinn A, Ae-Ngibise KA, Wylie BJ, Boamah-Kaali EA, et al. Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. International Journal of Environmental Research and Public Health. 2019; 16(1):26. https://doi.org/10.3390/ijerph16010026
Chicago/Turabian StyleKaali, Seyram, Darby W. Jack, Rupert Delimini, Lisa Hu, Katrin Burkart, Jones Opoku-Mensah, Ashlinn Quinn, Kenneth Ayuurebobi Ae-Ngibise, Blair J. Wylie, Ellen Abrafi Boamah-Kaali, and et al. 2019. "Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations" International Journal of Environmental Research and Public Health 16, no. 1: 26. https://doi.org/10.3390/ijerph16010026
APA StyleKaali, S., Jack, D. W., Delimini, R., Hu, L., Burkart, K., Opoku-Mensah, J., Quinn, A., Ae-Ngibise, K. A., Wylie, B. J., Boamah-Kaali, E. A., Chillrud, S., Owusu-Agyei, S., Kinney, P. L., Baccarelli, A. A., Asante, K. P., & Lee, A. G. (2019). Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. International Journal of Environmental Research and Public Health, 16(1), 26. https://doi.org/10.3390/ijerph16010026