The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China
Abstract
:1. Introduction
2. Methods
2.1. Survey Sites
2.2. Participants
2.3. Procedure
2.4. Data Statistics
3. Results
3.1. Identification of Audio-Visual Context and Experiences
3.2. Influence of Audio-Visual Interactions on Psychological Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rachael, D.; Kimberly, R. Freshmen adaptation to university life: Depressive symptoms, stress, and coping. J. Clin. Psychol. 2010, 62, 1231–1244. [Google Scholar]
- Tsiotra, P.C.; Tsigos, C. Stress, the endoplasmic reticulum, and insulin resistance. Ann. N Y Acad. Sci. 2010, 1083, 63–76. [Google Scholar] [CrossRef]
- Nilsson, K.; Sangster, M.; Konijnendijk, C.C. Forests, Trees and Human Health and Well-being: Introduction; Springer: Heidelberg, The Netherlands, 2011. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Maller, C.; Townsend, M.A.; Brown, P.; Leger, S.L. Healthy nature healthy people: ‘contact with nature‘ as an upstream health promotion intervention for populations. Health Promot. Int. 2006, 21, 45. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Payne, S.R. The production of a Perceived Restorativeness Soundscape Scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Kjellgren, A.; Buhrkall, H. A comparison of the restorative effect of a natural environment with that of a simulated natural environment. J. Environ. Psychol. 2010, 30, 464–472. [Google Scholar] [CrossRef]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18. [Google Scholar] [CrossRef]
- Han, K.T. The Effect of Nature and Physical Activity on Emotions and Attention while Engaging in Green Exercise. Urban For. Urban Green. 2017, 24, 5–13. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Lands. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Alvarsson, J.J.; Wiens, S.; Nilsson, M.E. Stress Recovery during Exposure to Nature Sound and Environmental Noise. Int. J. Environ. Res. Public Health 2010, 7, 1036–1046. [Google Scholar] [CrossRef]
- Aletta, F.; Oberman, T.; Kang, J. Associations between Positive Health-Related Effects and Soundscapes Perceptual Constructs: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2392. [Google Scholar] [CrossRef] [PubMed]
- Aletta, F.; Kang, J. Towards an Urban Vibrancy Model: A Soundscape Approach. Int. J. Environ. Res. Public Health 2018, 15, 1712. [Google Scholar] [CrossRef]
- Payne, S.R.; Bruce, N. Exploring the Relationship between Urban Quiet Areas and Perceived Restorative Benefits. Int. J. Environ. Res. Public Health 2019, 16, 1611. [Google Scholar] [CrossRef] [PubMed]
- Herranz-Pascual, K.; Aspuru, I.; Iraurgi, I.; Santander, A.; Luis Eguiguren, J.; Garcia, I. Going beyond Quietness: Determining the Emotionally Restorative Effect of Acoustic Environments in Urban Open Public Spaces. Int. J. Environ. Res. Public Health 2019, 16, 1284. [Google Scholar] [CrossRef] [PubMed]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundstrom, J.N. Sounds of Nature in the City: No Evidence of Bird Song Improving Stress Recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef]
- Shepherd, D.; Welch, D.; Dirks, K.N.; Mcbride, D. Do Quiet Areas Afford Greater Health-Related Quality of Life than Noisy Areas? Int. J. Environ. Res. Public Health 2013, 10, 1284–1303. [Google Scholar] [CrossRef]
- Namni, G.; Etwaroo, G.R. Bright light, negative air ions and auditory stimuli produce rapid mood changes in a student population: A placebo-controlled study. Psychol. Med. 2006, 36, 1253. [Google Scholar]
- Renterghem, T.V. Towards explaining the positive effect of vegetation on the perception of environmental noise. Urban For. Urban Green. 2019, 40, 133–144. [Google Scholar] [CrossRef]
- Watts, G.R.; Pheasant, R.J.; Horoshenkov, K.V.; Ragonesi, L. Measurement and Subjective Assessment of Water Generated Sounds. Acta Acust. United Acust. 2009, 95, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Bao, Z.Y.; Zhu, J.Z. An Assessment of Psychological Noise Reduction by Landscape Plants. Int. J. Environ. Res. Public Health 2011, 8, 1032–1048. [Google Scholar] [CrossRef] [Green Version]
- Pheasant, R.J.; Fisher, M.N.; Watts, G.R.; Whitaker, D.J.; Horoshenkov, K.V. The importance of auditory-visual interaction in the construction of ‘tranquil space’. J. Environ. Psychol. 2010, 30, 501–509. [Google Scholar] [CrossRef]
- Shu, S.; Ma, H. The restorative environmental sounds perceived by children. J. Environ. Psychol. 2018, 60, 72–80. [Google Scholar] [CrossRef]
- Morita, E.; Fukuda, S.; Nagano, J.; Hamajima, N.; Yamamoto, H.; Iwai, Y.; Nakashima, T.; Ohira, H.; Shirakawa, T. Psychological effects of forest environments on healthy adults: Shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 2007, 121, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Ming, K. How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Front. Psychol. 2015, 6, 1093. [Google Scholar]
- Bagot, K.L.; Allen, F.C.L.; Toukhasati, S. Perceived restorativeness of children’s school playground environments: Nature, playground features and play period experiences. J. Environ. Psychol. 2015, 41, 1–9. [Google Scholar] [CrossRef]
- Artmann, M.; Chen, X.; Iojă, C.; Hof, A.; Onose, D.; Poniży, L.; Lamovšek, A.Z.; Breuste, J. The role of urban green spaces in care facilities for elderly people across European cities. Urban For. Urban Green. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Cerwén, G.; Mossberg, F. Implementation of Quiet Areas in Sweden. Int. J. Environ. Res. Public Health 2019, 16, 134. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Honga, J.Y.; Lee, P.J. Soundwalk approach to identify urban soundscapes individually. J. Acoust. Soc. Am. 2013, 134, 803. [Google Scholar] [CrossRef]
- Romero, V.P.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, Visual and Spatial Indicators for the Description of the Soundscape of Waterfront Areas with and without Road Traffic Flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, Q.; Kang, J. The Influence of Crowd Density on Evaluation of Soundscape in Typical Chinese Restaurant. In Proceedings of the INTER-NOISE 2016—45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, Hamburg, Germany, 21–24 August 2016; German Acoustical Society: Hamburg, Germany, 2016; pp. 6150–6155. [Google Scholar]
- Ba, M.; Kang, J. A laboratory study of the sound-odour interaction in urban environments. Build. Environ. 2019, 147, 314–326. [Google Scholar] [CrossRef]
- Shu, S.; Ma, H. Restorative Effects of Classroom Soundscapes on Children’s Cognitive Performance. Int. J. Environ. Res. Public Health 2019, 16, 293. [Google Scholar] [CrossRef]
- Chee, G.L.; Wynaden, D.; Heslop, K. Improving metabolic monitoring rate for young people aged 35 and younger taking antipsychotic medications to treat a psychosis: A literature review. Arch. Psychiatr. Nurs. 2017, 31, 624. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Q.; Liu, X.; Liu, M.; Qu, S.; Bi, J. Biased perception misguided by affect: How does emotional experience lead to incorrect judgments about environmental quality? Glob. Environ. Chang. 2018, 53, 104–113. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Meng, Q.; Kang, J. Influence of Contextual Factors on Soundscape in Urban Open Spaces. Appl. Sci. 2018, 8, 2524. [Google Scholar] [CrossRef]
- Fastl, H.; Zwicker, E. Psychoacoustics—Facts and Models, third Ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Tieskens, K.F.; Zanten, B.T.V.; Schulp, C.J.E.; Verburg, P.H. Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Lands. Urban Plann. 2018, 177, 128–137. [Google Scholar] [CrossRef]
- Berkel, D.B.V.; Tabrizian, P.; Dorning, M.A.; Smart, L.; Newcomb, D.; Mehaffey, M.; Neale, A.; Meentemeyer, R.K. Quantifying the visual-sensory landscape qualities that contribute to cultural ecosystem services using social media and LiDAR. Ecosyst. Serv. 2018, 31, 326–335. [Google Scholar] [CrossRef]
- Kumar, A.; Yerneni, L. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations. Biologicals 2009, 37, 55–60. [Google Scholar] [CrossRef]
- Zhang, X.; Bo, L.; Wang, J.; Zhe, Z.; Shi, K.; Wu, S. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities. Comput. Geosci. 2014, 69, 62–71. [Google Scholar] [CrossRef]
- ISO. Acoustics-Soundscape-Part 2: Data collection and reporting requirements. In (ISO/TS 12913-2:); ISO: Geneva, Switzerland, 2018; pp. 1–29. [Google Scholar]
- Thompson, E.R. Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). J. Cross Cult. Psychol. 2007, 38, 227–242. [Google Scholar] [CrossRef]
- Han, K.-T. A reliable and valid self-rating measure of the restorative quality of natural environments. Lands. Urban Plann. 2003, 64, 209–232. [Google Scholar] [CrossRef]
- Feeney, B.C. A Simple Guide to IBM SPSS Statistics for Version 20.0.; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Liu, Q.; Zhang, Y.; Lin, Y.; Wei, Z.; Bosch, C.K.V.D. The relationship between self-rated naturalness of university green space and students’ restoration and health. Urban For. Urban Green. 2018, 34, 259–268. [Google Scholar] [CrossRef]
- Brooks, A.M.; Ottley, K.M.; Arbuthnott, K.D.; Sevigny, P. Nature-related mood effects: Season and type of nature contact. J. Environ. Psychol. 2017, 54, 91–102. [Google Scholar] [CrossRef]
Sig. | Psychological Responses in Cloves Park | Psychological Responses in Music Park | |||||||
---|---|---|---|---|---|---|---|---|---|
CD | RA | EF | FD | CD | RA | EF | FD | ||
Acoustic-visual context | LAeq | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.509 | 0.370 | 0.916 | 0.333 |
Loudness | −0.071 | 0.013 * | 0.027 * | 0.003 ** | 0.255 | 0.455 | 0.179 | 0.437 | |
Roughness | 0.030 * | 0.004 ** | 0.009 ** | 0.001 ** | 0.436 | 0.272 | 0.915 | 0.289 | |
Sharpness | 0.814 | 0.731 | 0.407 | 0.397 | 0.961 | 0.691 | 0.615 | 0.673 | |
Visual green rate | 0.774 | 0.789 | 0.845 | 0.738 | 0.197 | 0.358 | 0.451 | 0.382 | |
Sky visibility | 0.206 | 0.212 | 0.174 | 0.130 | 0.056 | 0.046 * | 0.183 | 0.104 | |
Acoustic-visual experience | Acoustic comfort | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Visual comfort | 0.000 ** | 0.000 ** | 0.001 ** | 0.004 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Model | Collinearity | Unstandardized Coefficients | Standardized Coefficients | Sig. a | Sig. b | ||
---|---|---|---|---|---|---|---|
Variable | Predictors | VIF | Regression Coefficient | Std. Error | Beta | ||
CD: R2 = 0.537 R2 (adj) = 0.521 | (Constant) | 7.415 | 1.136 | 0.000 ** | 0.000 ** | ||
LAeq | 1.000 | −0.125 | 0.022 | −0.733 | 0.000 ** | ||
RA: R2 = 0.558 R2 (adj) = 0.542 | (Constant) | 7.681 | 1.117 | 0.000 ** | 0.000 ** | ||
LAeq | 1.000 | −0.129 | 0.022 | −0.747 | 0.000 ** | ||
EF: R2 = 0.533 R2 (adj) = 0.517 | (Constant) | 7.590 | 1.231 | 0.000 ** | 0.000 ** | ||
LAeq | 1.000 | −0.135 | 0.024 | −0.730 | 0.000 ** | ||
FD: R2 = 0.723 R2 (adj) = 0.713 | (Constant) | 7.095 | 0.791 | 0.000 ** | 0.000 ** | ||
LAeq | 1.000 | −0.131 | 0.015 | −0.850 | 0.000 ** |
Model | Collinearity | Unstandardized Coefficients | Standardized Coefficients | Sig. a | Sig. b | ||
---|---|---|---|---|---|---|---|
Variable | Predictors | VIF | Regression Coefficient | Std. Error | Beta | ||
CD: R2 = 0.870 R2 (adj) = 0.860 | (Constant) | 0.564 | 0.096 | 0.000 ** | 0.000 ** | ||
Acoustic comfort | 1.248 | 0.400 | 0.047 | 0.660 | 0.000 ** | ||
Visual comfort | 1.248 | 0.372 | 0.068 | 0.427 | 0.000 ** | ||
RA: R2 = 0.870 R2 (adj) = 0.860 | (Constant) | 0.779 | 0.097 | 0.000 ** | 0.000 ** | ||
Acoustic comfort | 1.248 | 0.456 | 0.047 | 0.748 | 0.000 ** | ||
Visual comfort | 1.248 | 0.277 | 0.068 | 0.316 | 0.000 ** | ||
EF: R2 = 0.712 R2 (adj) = 0.691 | (Constant) | 0.564 | 0.095 | 0.000** | 0.000 ** | ||
Acoustic comfort | 1.001 | 0.512 | 0.067 | 0.783 | 0.000 ** | ||
Visual comfort | 1.001 | 0.385 | 0.134 | 0.297 | 0.000 ** | ||
FD: R2 = 0.666 R2 (adj) = 0.654 | (Constant) | 0.405 | 0.073 | 0.000 ** | 0.000 ** | ||
Acoustic comfort | 1.000 | 0.445 | 0.059 | 0.816 | 0.000 ** |
Model | Collinearity | Unstandardized Coefficients | Standardized Coefficients | Sig. a | Sig. b | ||
---|---|---|---|---|---|---|---|
Variable | Predictors | VIF | Regression Coefficient | Std. Error | Beta | ||
CD: R2 = 0.862 R2 (adj) = 0.852 | (Constant) | 0.557 | 0.081 | 0.000 ** | 0.000 ** | ||
Acoustic comfort | 1.512 | 0.381 | 0.052 | 0.649 | 0.000 ** | ||
Visual comfort | 1.512 | 0.362 | 0.082 | 0.387 | 0.000 ** | ||
RA: R2 = 0.854 R2 (adj) = 0.843 | (Constant) | 0.478 | 0.092 | 0.000 ** | 0.000 ** | ||
Acoustic comfort | 1.512 | 0.417 | 0.059 | 0.640 | 0.000 ** | ||
Visual comfort | 1.512 | 0.405 | 0.094 | 0.391 | 0.000 ** | ||
EF: R2 = 0.612 R2 (adj) = 0.583 | (Constant) | −0.167 | 0.169 | 0.331 | 0.000 ** | ||
Visual comfort | 1.512 | 0.595 | 0.173 | 0.507 | 0.002 ** | ||
Acoustic comfort | 1.512 | 0.273 | 0.109 | 0.370 | 0.018 * | ||
FD: R2 = 0.758 R2 (adj) = 0.740 | (Constant) | −0.280 | 0.117 | 0.024 * | 0.000 ** | ||
Visual comfort | 1.512 | 0.575 | 0.119 | 0.561 | 0.000 ** | ||
Acoustic comfort | 1.512 | 0.268 | 0.075 | 0.415 | 0.001 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhao, X.; Zeng, Z.; Qiu, X. The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China. Int. J. Environ. Res. Public Health 2019, 16, 1845. https://doi.org/10.3390/ijerph16101845
Zhang S, Zhao X, Zeng Z, Qiu X. The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China. International Journal of Environmental Research and Public Health. 2019; 16(10):1845. https://doi.org/10.3390/ijerph16101845
Chicago/Turabian StyleZhang, Shilun, Xiaolong Zhao, Zixi Zeng, and Xuan Qiu. 2019. "The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China" International Journal of Environmental Research and Public Health 16, no. 10: 1845. https://doi.org/10.3390/ijerph16101845
APA StyleZhang, S., Zhao, X., Zeng, Z., & Qiu, X. (2019). The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China. International Journal of Environmental Research and Public Health, 16(10), 1845. https://doi.org/10.3390/ijerph16101845