The Effect of Ballistic Exercise as Pre-Activation for 100 m Sprints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Experimental Procedures
2.4. Warm-Up Protocols
2.5. Time-Trial Performance
2.6. Kinematics
2.7. Physiological and Psychophysiological Variables
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, L.M.; Neiva, H.P.; Marques, M.C.; Izquierdo, M.; Marinho, D.A. Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: A systematic review. Sports Med. 2018, 48, 2285–2299. [Google Scholar] [CrossRef] [PubMed]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Viana, J.L.; Teixeira, A.M.; Marinho, D.A. The effects of different warm-up volumes on the 100 m swimming performance: A randomized crossover study. J. Strength Cond. Res. 2015, 29, 3026–3036. [Google Scholar] [CrossRef] [PubMed]
- Kilduff, L.P.; West, D.J.; Williams, N.; Cook, C.J. The influence of passive heat maintenance on lower body power output and repeated sprint performance in professional rugby league players. J. Sci. Med. Sport 2013, 16, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J. A functional approach to warm-up and flexibility. Strength Cond. J. 2006, 28, 30–36. [Google Scholar] [CrossRef]
- Neiva, H.P.; Marques, M.C.; Fernandes, R.J.; Viana, J.L.; Barbosa, T.M.; Marinho, D.A. Does warm-up have a beneficial effect on 100 m freestyle? Int. J. Sports Physiol. Perform. 2014, 9, 145–150. [Google Scholar] [CrossRef]
- Marinho, D.A.; Gil, M.H.; Marques, M.C.; Barbosa, T.M.; Neiva, H.P. Complementing warm-up with stretching routines: Effects in sprint performance. Sports Med. Inter. Open 2017, 1, E101–E106. [Google Scholar] [CrossRef] [PubMed]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Marinho, D.A. Warm-up and performance in competitive swimming. Sports Med. 2014, 44, 319–330. [Google Scholar] [CrossRef]
- Zois, J.; Bishop, D.J.; Ball, K.; Aughey, R.J. High-intensity warm-ups elicit superior performance to current soccer warm-up routine. J. Sci. Med. Sport 2011, 14, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.C.; Henriquez-Olguín, C.; Beltrán, A.R.; Ramírez, M.A.; Labarca, C.; Cornejo, M.; Álvarez, C.; Ramírez-Campillo, R. Effects of general, specific and combined warm-up on explosive muscular performance. Biol. Sport 2015, 32, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kallerud, H.; Gleeson, N. Effects of stretching on performances involving stretch-shortening cycles. Sports Med. 2013, 43, 733–750. [Google Scholar] [CrossRef]
- Perrier, E.T.; Pavol, M.J.; Hoffman, M.A. The acute effects of a warm-up including static or dynamic stretching on countermovement jump height, reaction time, and flexibility. J. Strength Cond. Res. 2011, 25, 1925–1931. [Google Scholar] [CrossRef]
- Blagrove, R.C.; Holding, K.M.; Patterson, S.D.; Howatson, G.; Hayes, P.R. Efficacy of depth jumps to elicit a post-activation performance enhancement in junior Endurance runners. J. Sci. Med. Sport 2019, 22, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.H.; Neiva, H.P.; Sousa, A.C.; Marques, M.C.; Marinho, D.A. Current approaches on warming up for sports performance: A critical review. Strength Cond. J. 2019. [Google Scholar] [CrossRef]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef]
- Seitz, L.B.; de Villarreal, E.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Saez Saez de Villarreal, E.; González-Badillo, J.J.; Izquierdo, M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur. J. Appl. Physiol. 2007, 100, 393–401. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Robillard, M.E.; Tomaras, E.K. Should postactivation potentiation be the goal of your warm up? J. Appl. Physiol. Nutr. Metabol. 2012, 37, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Xenofondos, A.; Laparidis, K.; Kyranoudis, A.; Galazoulas, C.; Bassa, E.; Kotzamanidis, C. Post-activation potentiation: Factors affecting it and the effect on performance. J. Phys. Educ. Sport 2010, 28, 32–38. [Google Scholar]
- Rahimi, R. The acute effects of heavy versus light-load squats on sprint performance. Ser. Phys. Educ. Sport. 2007, 5, 163–169. [Google Scholar]
- Chatzopoulos, D.E.; Michailidis, C.J.; Giannakos, A.K.; Alexiou, K.C.; Patikas, D.A.; Antonopoulos, C.B.; Kotzamanidis, C.M. Post-activation potentiating effects after heavy resistance exercise on running speed. J. Strength Cond. Res. 2007, 21, 1278–1281. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Cunningham, D.J.; Owen, N.J.; West, D.J.; Bracken, R.M.; Cook, C.J. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 2418–2423. [Google Scholar] [CrossRef] [PubMed]
- Kilduff, L.P.; Owen, N.; Bevan, H.; Bennett, M.; Kingsley, M.I.; Cunningham, D. Influence of recovery time on post-activation potentiation in professional rugby players. J. Sport Sci. 2008, 26, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Masamoto, N.; Larsen, R.; Gates, T.; Faigenbaum, A. Acute effects of plyometric exercise on maximum squat performance in athletes. J. Strength Cond. Res. 2003, 17, 68–71. [Google Scholar] [PubMed]
- Hilfiker, R.; Hubner, K.; Lorenz, T.; Marti, B. Effects of drop jumps added to the warm-up of elite sport athletes with a high capacity for explosive force development. J. Strength Cond. Res. 2007, 21, 550–555. [Google Scholar] [CrossRef]
- Stieg, J.L.; Faulkinbury, K.J.; Tran, T.T.; Brown, L.E.; Coburn, J.W.; Judelson, D.A. Acute effects of depth jump volume on vertical jump performance in collegiate women soccer players. Kinesiology 2011, 43, 25–30. [Google Scholar]
- Byrne, P.J.; Kenny, J.; O’Rourke, B. Acute potentiating effect of depth jumps on sprint performance. J. Strength Cond. Res. 2014, 28, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Krzysztof, M.; Mero, A. A kinematics analysis of three best 100 m performances ever. J. Hum. Kinet. 2013, 36, 149–160. [Google Scholar] [CrossRef]
- Coh, M.; Milanovic, D.; Kampmiller, T. Morphologic and kinematic characteristics of elite sprinters. Coll. Antropol. 2001, 25, 605–610. [Google Scholar]
- Prampero, P.; Fusi, S.; Sepulcri, J.; Morin, B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol. 2005, 208, 2809–2816. [Google Scholar] [CrossRef]
- Spencer, M.; Bishop, D.; Dawson, B.; Goodman, C. Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med. 2005, 35, 1025–1044. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Weston, M.; Portas, M.D. The effect of a short practical warm-up protocol on repeated sprint performance. J. Strength Cond. Res. 2013, 27, 2034–2038. [Google Scholar] [CrossRef]
- Maloney, S.J.; Turner, A.N.; Fletcher, I.M. Ballistic exercise as a pre-activation stimulus: A review of the literature and practical applications. Sports Med. 2014, 44, 1347–1359. [Google Scholar] [CrossRef]
- Hamill, J.; Knutzen, K.M. Biomechanical Basis of Human Movement; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood Lactate Measurements and Analysis during Exercise: A Guide for Clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics Publishers: Champaign, IL, USA, 1998. [Google Scholar]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- West, D.; Cunningham, D.; Bevan, H.; Crewther, B.; Cook, C.; Kilduff, L. Influence of active recovery on professional rugby union player’s ability to harness postactivation potentiation. J. Sports Med. Phys. Fitness 2013, 53, 203–208. [Google Scholar]
- Till, K.A.; Cooke, C. The effects of postactivation potentiation on sprint and jump performance of male academy soccer players. J. Strength Cond. Res. 2009, 23, 1960–1967. [Google Scholar] [CrossRef]
- Johnson, M.; Baudin, P.; Ley, A.L.; Collins, D.F. A Warm-Up Routine That Incorporates a Plyometric Protocol Potentiates the Force-Generating Capacity of the Quadriceps Muscles. J. Strength Cond. Res. 2019, 33, 380–389. [Google Scholar] [CrossRef]
- Turner, A.P.; Bellhouse, S.; Kilduff, L.P.; Russell, M. Postactivation potentiation of sprint acceleration performance using plyometric exercise. J. Strength Cond. Res. 2015, 29, 343–350. [Google Scholar] [CrossRef]
- Lima, B.J.; Marin, D.; Barquilha, G.; da Silva, L.; Puggina, E.; Pithon-Curi, T.; Hirabara, S.M. Acute effects of drop jump potentiation protocol on sprint and countermovement vertical jump performance. Hum. Mov. Sci. 2011, 12, 324–330. [Google Scholar] [CrossRef]
- Gastin, P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001, 31, 725–741. [Google Scholar] [CrossRef]
- Mackala, K. Optimisation of performance through kinematic analysis of the different phases of the 100 meters. New Stud. Athlet. 2007, 22, 7–16. [Google Scholar]
- Salo, A.I.; Bezodis, I.N.; Batterham, A.M.; Kerwin, D.G. Elite sprinting: Are athletes individually step-frequency or step-length reliant? Med. Sci. Sports Exerc. 2011, 43, 1055–1062. [Google Scholar] [CrossRef]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Viana, V.L.; Teixeira, A.M.; Marinho, D.A. Warm-up for sprint swimming: Race-pace or aerobic stimulation? A randomized study. J. Strength Cond. Res. 2017, 31, 2423–2431. [Google Scholar] [CrossRef]
- Raccuglia, M.; Lloyd, A.; Filingeri, D.; Faulkner, S.H.; Hodder, S.; Havenith, G. Post-warm-up muscle temperature maintenance: Blood flow contribution and external heating optimization. Eur. J. Appl. Physiol. 2016, 116, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentation and power: Effects of conditioning activity, volume, gender, rest periods and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Baudry, S.; Duchateau, J. Postactivation potentiation in a human muscle: Effect on the rate of torque development of tetanic and voluntary isometric contractions. J. Appl. Physiol. 2007, 102, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Sue, A.S.; Adams, K.J.; DeBeliso, M. Optimal timing for post-activation potentiation in women collegiate volleyball players. Sports 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed]
NWU vs. WU | NWU vs. PAP | WU vs. PAP | |||||||
---|---|---|---|---|---|---|---|---|---|
NWU | WU | PAP | p-Value | ES | p-Value | ES | p-Value | ES | |
HR (bpm) | 72 ± 6 (68, 76) | 99 ± 13 (89, 108) | 91 ± 9 (86, 97) | <0.001 ** | 2.72 | <0.001 ** | 2.43 | 0.42 | 0.70 |
[La−] (mmol·L−1) | 2.5 ± 0.6 (2.0, 2.9) | 4.7 ± 1.1 (3.9, 5.5) | 4.4 ± 1.0 (3.7, 5.1) | <0.001 ** | 2.48 | <0.001 ** | 2.27 | 0.63 | 0.27 |
NWU vs. WU | NWU vs. PAP | WU vs. PAP | |||||||
---|---|---|---|---|---|---|---|---|---|
NWU | WU | PAP | p-Value | ES | p-Value | ES | p-Value | ES | |
T0–50 (s) | 7.30 ± 0.68 (6.85, 7.64) | 7.01 ± 0.58 (6.68, 7.34) | 7.00 ± 0.62 (6.61, 7.39) | 0.34 | 0.44 | 0.39 | 0.44 | 1.00 | 0.02 |
T50–100 (s) | 8.69 ± 0.69 (8.20, 9.18) | 7.66 ± 0.73 (7.13, 8.18) | 7.66 ± 0.91 (7.01, 8.31) | 0.03 * | 1.39 | 0.04 * | 1.23 | 1.00 | 0.00 |
T100 (s) | 15.99 ± 0.96 (15.30, 16.68) | 14.67 ± 1.29 (13.75, 15.60) | 14.66 ± 1.52 (13.58, 15.74) | 0.01 *** | 1.12 | 0.02 * | 1.03 | 1.00 | 0.01 |
T0–50 SF (Hz) | 1.97 ± 0.19 (1.84, 2.11) | 2.08 ± 0.14 (1.97, 2.18) | 2.04 ± 0.13 (1.95, 2.13) | 0.12 | 0.64 | 0.55 | 0.42 | 0.15 | 0.28 |
T50–100 SF (Hz) | 1.72 ± 0.21 (1.57, 1.87) | 1.89 ± 0.11 (1.81, 1.96) | 1.91 ± 0.10 (1.84, 1.98) | 0.05 * | 1.02 | 0.03 ** | 1.17 | 0.77 | 0.18 |
T0–50 SL (m) | 3.51 ± 0.32 (3.28, 3.75) | 3.47 ± 0.34 (3.23, 3.71) | 3.54 ± 0.36 (3.3, 3.86) | 0.74 | 0.12 | 1.00 | 0.08 | 0.01 ** | 0.19 |
T50–100 SL (m) | 3.40 ± 0.33 (3.16, 3.63) | 3.51 ± 0.42 (3.21, 3.81) | 3.47 ± 0.42 (3.17, 3.77) | 0.10 | 0.28 | 0.42 | 0.18 | 0.48 | 0.09 |
HR (bpm) | 148 ± 24 (131, 165) | 156 ± 22 (140, 172) | 162 ± 18 (149, 175) | 1.00 | 0.33 | 0.43 | 0.64 | 0.84 | 0.29 |
[La−]peak (mmol·L−1) | 7.6 ± 1.8 (6.3, 8.8) | 8.5 ± 1.3 (7.5, 9.4) | 8.9 ± 1.5 (7.8, 10.1) | 0.38 | 0.56 | 0.32 | 0.75 | 1.00 | 0.27 |
RPE | 6 ± 2 (5, 7) | 7 ± 1 (6, 8) | 7 ± 1 (6, 7) | 1.00 | 0.35 | 0.76 | 0.30 | 1.00 | 0.08 |
NWU vs. WU | NWU vs. PAP | WU vs. PAP | |||||||
---|---|---|---|---|---|---|---|---|---|
NWU | WU | PAP | p-Value | ES | p-Value | ES | p-Value | ES | |
T0–50 (s) | 7.16 ± 0.59 (6.73, 7.58) | 7.03 ± 0.56 (6.63, 7.43) | 6.97 ± 0.59 (6.55, 7.39) | 0.80 | 0.22 | 0.32 | 0.31 | 1.00 | 0.10 |
T50–100 (s) | 7.76 ± 0.61 (7.33, 8.20) | 7.70 ± 0.82 (7.11, 8.29) | 7.78 ± 0.98 (7.08, 8.48) | 1.00 | 0.08 | 1.00 | 0.02 | 1.00 | 0.09 |
T100 (s) | 14.92 ± 1.16 (14.09, 15.75) | 14.73 ± 1.36 (13.76, 15.70) | 14.75 ± 1.52 (13.67, 15.84) | 1.00 | 0.14 | 1.00 | 0.12 | 1.00 | 0.01 |
T0–50 SF (Hz) | 1.98 ± 0.16 (1.87, 2.10) | 2.04 ± 0.09 (1.97, 2.11) | 2.02 ± 0.12 (1.94, 2.10) | 0.42 | 0.46 | 0.82 | 0.27 | 1.00 | 0.18 |
T50–100 SF (Hz) | 1.88 ± 0.14 (1.77, 1.98) | 1.89 ± 0.12 (1.80, 1.97) | 1.86 ± 0.13 (1.77, 1.95) | 1.00 | 0.07 | 1.00 | 0.14 | 1.00 | 0.23 |
T0–50 SL (m) | 3.56 ± 0.32 (3.33, 3.79) | 3.51 ± 0.32 (3.28, 3.74) | 3.59 ± 0.38 (3.32, 3.86) | 0.74 | 0.15 | 1.00 | 0.08 | 0.18 | 0.22 |
T50–100 SL (m) | 3.47 ± 0.39 (3.19, 3.75) | 3.49 ± 0.38 (3.22, 3.75) | 3.52 ± 0.47 (3.18, 3.85) | 1.00 | 0.05 | 1.00 | 0.11 | 1.00 | 0.07 |
HR (bpm) | 164 ± 10 (157, 171) | 161 ± 29 (140, 182) | 172 ± 20 (158, 186) | 1.00 | 0.15 | 0.25 | 0.51 | 0.63 | 0.43 |
[La−]peak [mmol·L−1] | 10.6 ± 1.6 (9.5, 11.7) | 11.7 ± 1.6 (10.6, 12.8) | 11.7 ± 1.9 (10.4, 13.0) | 0.16 | 0.66 | 0.43 | 0.60 | 1.00 | 0.00 |
RPE | 7 ± 2 (6, 8) | 7 ± 1 (6, 8) | 7 ± 1 (7, 8) | 1.00 | 0.06 | 1.00 | 0.14 | 0.84 | 0.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.H.; Neiva, H.P.; Garrido, N.D.; Aidar, F.J.; Cirilo-Sousa, M.S.; Marques, M.C.; Marinho, D.A. The Effect of Ballistic Exercise as Pre-Activation for 100 m Sprints. Int. J. Environ. Res. Public Health 2019, 16, 1850. https://doi.org/10.3390/ijerph16101850
Gil MH, Neiva HP, Garrido ND, Aidar FJ, Cirilo-Sousa MS, Marques MC, Marinho DA. The Effect of Ballistic Exercise as Pre-Activation for 100 m Sprints. International Journal of Environmental Research and Public Health. 2019; 16(10):1850. https://doi.org/10.3390/ijerph16101850
Chicago/Turabian StyleGil, Maria H., Henrique P. Neiva, Nuno D. Garrido, Felipe J. Aidar, Maria S. Cirilo-Sousa, Mário C. Marques, and Daniel A. Marinho. 2019. "The Effect of Ballistic Exercise as Pre-Activation for 100 m Sprints" International Journal of Environmental Research and Public Health 16, no. 10: 1850. https://doi.org/10.3390/ijerph16101850
APA StyleGil, M. H., Neiva, H. P., Garrido, N. D., Aidar, F. J., Cirilo-Sousa, M. S., Marques, M. C., & Marinho, D. A. (2019). The Effect of Ballistic Exercise as Pre-Activation for 100 m Sprints. International Journal of Environmental Research and Public Health, 16(10), 1850. https://doi.org/10.3390/ijerph16101850