Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association of PM10 and Greenness with Cause-Specific Mortality
3.3. Interactions Between PM10 and Greenness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. EHP 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. (1995) 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Fong, K.C.; Hart, J.E.; James, P. A Review of Epidemiologic Studies on Greenness and Health: Updated Literature Through 2017. Curr. Environ. Health Rep. 2018, 5, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Triguero-Mas, M.; Martinez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasencia, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Henderson, K.A. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leis. Sci. 2007, 29, 315–354. [Google Scholar] [CrossRef]
- Sugiyama, T.; Giles-Corti, B.; Summers, J.; du Toit, L.; Leslie, E.; Owen, N. Initiating and maintaining recreational walking: A longitudinal study on the influence of neighborhood green space. Prev. Med. 2013, 57, 178–182. [Google Scholar] [CrossRef]
- Maas, J.; van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Garling, T. Tracking restoration in natural and urban field settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Kioumourtzoglou, M.A.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and Mortality in 207 US Cities Modification by Temperature and City Characteristics. Epidemiology 2016, 27, 221–227. [Google Scholar] [PubMed]
- De Keijzer, C.; Agis, D.; Ambros, A.; Arevalo, G.; Baldasano, J.M.; Bande, S.; Barrera-Gomez, J.; Benach, J.; Cirach, M.; Dadvand, P.; et al. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study. Environ. Int. 2017, 99, 170–176. [Google Scholar] [CrossRef]
- MacNaughton, P.; Eitland, E.; Kloog, I.; Schwartz, J.; Allen, J. Impact of Particulate Matter Exposure and Surrounding “Greenness” on Chronic Absenteeism in Massachusetts Public Schools. Int. J. Environ. Res. Public Health 2017, 14, 207. [Google Scholar] [CrossRef]
- Statistics Korea. Statistics of Urban Plan. Available online: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01&parentId=H.1;H1.2;315_31502.3;#SelectStatsBoxDiv (accessed on 3 March 2019).
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Richardson, E.A.; Mitchell, R. Gender differences in relationships between urban green space and health in the United Kingdom. Soc. Sci. Med (1982) 2010, 71, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). Available online: http://earthobservatory.nasa.gov/Features/MeasuringVegetation (accessed on 3 March 2019).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Commun. Health 2006, 60, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Winkleby, M.A.; Jatulis, D.E.; Frank, E.; Fortmann, S.P. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 1992, 82, 816–820. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, M.H. Health inequalities in Korea: Current conditions and implications. J. Prev. Med. Public Health 2007, 40, 431–438. [Google Scholar] [CrossRef]
- OECD Health Statistics. Available online: https://www.oecd-ilibrary.org/content/data/data-00541-en (accessed on 5 May 2019).
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Sorensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjonneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef]
- Song, Q.K.; Christiani, D.C.; Wang, X.R.; Ren, J. The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2014, 11, 11822–11832. [Google Scholar] [CrossRef] [Green Version]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More than a Million Adults in Rome. EHP 2013, 121, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimakopoulou, K.; Samoli, E.; Beelen, R.; Stafoggia, M.; Andersen, Z.J.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P.; Xun, W.; et al. Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project. Am. J. Respir. Crit. Care Med. 2014, 189, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.L.; Pinault, L.; Balram, A.; Hystad, P.; Peters, P.A.; Chen, H.; van Donkelaar, A.; Martin, R.V.; Menard, R.; Robichaud, A.; et al. Urban greenness and mortality in Canada’s largest cities: A national cohort study. Lancet Planet. Health 2017, 1, e289–e297. [Google Scholar] [CrossRef]
- Lipsitch, M.; Tchetgen, E.T.; Cohen, T. Negative Controls A Tool for Detecting Confounding and Bias in Observational Studies. Epidemiology 2010, 21, 383–388. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Gree. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Riviere, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Gree. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Lodovici, M.; Bigagli, E. Oxidative stress and air pollution exposure. J. Toxicol. 2011, 2011, 487074. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Kimura, H.; Kon, N.; Furukawa, S.; Mukaida, M.; Yamakura, F.; Matsumoto, K.; Sone, H.; Murakami-Murofushi, K. Effect of endurance exercise training on oxidative stress in spontaneously hypertensive rats (SHR) after emergence of hypertension. Clin. Exp. Hypertens. 2010, 32, 407–415. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K. The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays Biochem. 2006, 42, 105–117. [Google Scholar] [CrossRef]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef]
- Carinanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 2011, 101, 205–214. [Google Scholar] [CrossRef]
- Jianan, X.; Zhiyun, O.; Hua, Z.; Xiaoke, W.; Hong, M. Allergenic pollen plants and their influential factors in urban areas. J. Acta Ecologica. Sinica. 2007, 27, 3820–3827. [Google Scholar] [CrossRef]
- Ghiani, A.; Aina, R.; Asero, R.; Bellotto, E.; Citterio, S. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 2012, 67, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Lierl, M.B.; Hornung, R.W. Relationship of outdoor air quality to pediatric asthma exacerbations. Annals of allergy, asthma & immunology. Ann. Allergy Asthma Immunol. 2003, 90, 28–33. [Google Scholar]
- Lohmus, M.; Balbus, J. Making green infrastructure healthier infrastructure. Infect. Ecol. Epidemiol. 2015, 5, 30082. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Urban Green Spaces and Health: A Review of Evidence. 2016. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/urban-health/publications/2016/urban-green-spaces-and-health-a-review-of-evidence-2016 (accessed on 5 May 2019).
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random measurement error and regression dilution bias. BMJ 2010, 340, c2289. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Saelens, B.E.; Powell, K.E.; Chapman, J.E. Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Soc. Sci. Med. 2007, 65, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Woosnam, K.M.; Marcouiller, D.W.; Aleshinloye, K.D.; Choi, Y. Residential mobility, urban preference, and human settlement: A South Korean case study. Habitat Int. 2015, 49, 497–507. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28 (Suppl. 2), 159–168. [Google Scholar] [CrossRef] [PubMed]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: how important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28 (Suppl. 2), 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E. Association of park size, distance, and features with physical activity in neighborhood parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean | Median | Standard Deviation | 25th–75th Percentile |
---|---|---|---|---|
PM10 (μg/m3) | 47.65 | 47.13 | 6.48 | 43.00–51.88 |
NDVI | 0.48 | 0.48 | 0.13 | 0.38–0.58 |
Percentage of adults with low education (%) | 14.13 | 13.59 | 4.76 | 11.09–16.39 |
Smoking rate (%) | 23.97 | 24.00 | 2.90 | 22.1–25.9 |
Health care resource index | 0.00 | −0.75 | 2.70 | −1.60–0.54 |
Standardized mortality rates (per 100,000) | ||||
Non-accidental | 336.42 | 334.05 | 50.65 | 299.73–371.13 |
Cardiovascular disease | 85.08 | 83.93 | 22.27 | 67.05–101.06 |
Ischemic heart disease | 21.08 | 19.86 | 7.16 | 15.96–24.98 |
Respiratory disease | 28.14 | 28.16 | 6.59 | 23.40–32.15 |
Chronic lower respiratory disease | 8.90 | 8.41 | 3.78 | 6.00–11.13 |
Lung cancer | 22.90 | 22.65 | 4.29 | 20.11–25.54 |
Single-Exposure Model a,b | Two-Exposure Model a,b | |
---|---|---|
Percent Increase (95% Confidence Interval) | Percent Increase (95% Confidence Interval) | |
Non-accidental | ||
PM10 (per 10 μg/m3) | 4.50% (3.42%, 5.58%) | 4.49% (3.41%, 5.57%) |
NDVI (per IQR) c | −0.59% (−1.85%, 0.69%) | −0.40% (−1.59%, 0.81%) |
Cardiovascular disease | ||
PM10 (per 10 μg/m3) | 9.75% (7.67%, 11.86%) | 9.70% (7.64%, 11.81%) |
NDVI (per IQR) c | −2.89% (−5.18%, −0.53%) | −2.56% (−4.68%, −0.39%) |
Ischemic heart disease | ||
PM10 (per 10 μg/m3) | 7.5%9 (4.28%, 11.00%) | 7.50% (4.19%, 10.90%) |
NDVI (per IQR) c | −3.64% (−7.08%, −0.06%) | −3.45% (−6.84%, 0.07%) |
Respiratory disease | ||
PM10 (per 10 μg/m3) | −3.23% (−5.46%, −0.96%) | −3.12% (−5.36%, −0.83%) |
NDVI (per IQR) c | 1.85% (−0.76%, 4.52%) | 1.53% (−1.07%, 4.19%) |
Chronic lower respiratory disease | ||
PM10 (per 10 μg/m3) | 16.13% (11.52%, 20.92%) | 16.03% (11.42%, 20.85%) |
NDVI (per IQR) c | −3.75% (−8.50%, 1.24%) | −3.41% (−7.97%, 1.39%) |
Lung cancer | ||
PM10 (per 10 μg/m3) | 2.93% (0.87%, 5.03%) | 2.98% (0.92%, 5.08%) |
NDVI (per IQR) c | 1.10% (−1.22%, 3.47%) | 1.25% (−1.06%, 3.62%) |
Non-Accidental | Cardio Vascular Disease | Ischemic Heart Disease | Respiratory Disease | Chronic Lower Respiratory Disease | Lung Cancer | |
---|---|---|---|---|---|---|
Greenness a | ||||||
High | 5.83% (3.95%, 7.74%) | 7.46% (3.97%, 11.07%) | 1.89% (−4.51%, 8.72%) | −1.27% (−5.12%, 2.73%) | 20.88% (12.54%, 29.82%) | 4.32% (0.19%, 8.62%) |
Medium | 3.57% (1.81%, 5.37%) | 8.56% (5.05%, 12.18%) | 6.73% (1.58%, 12.13%) | −3.14% (−6.78%, 0.64%) | 14.09% (6.73%, 21.95%) | 1.51% (−1.56%, 4.67%) |
Low | 3.45% (1.42%, 5.51%) | 11.23% (7.28%, 15.32%) | 7.86% (1.52%, 14.60%) | −9.23% (−12.83%, −5.47%) | 11.20% (1.57%, 21.74%) | 4.34% (0.26%, 8.59%) |
p-value for interaction b | 0.01 | 0.67 | 0.10 | 0.18 | 0.47 | 0.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, H.; Lee, J.-T. Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. Int. J. Environ. Res. Public Health 2019, 16, 1866. https://doi.org/10.3390/ijerph16101866
Kim S, Kim H, Lee J-T. Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. International Journal of Environmental Research and Public Health. 2019; 16(10):1866. https://doi.org/10.3390/ijerph16101866
Chicago/Turabian StyleKim, Sera, Honghyok Kim, and Jong-Tae Lee. 2019. "Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016" International Journal of Environmental Research and Public Health 16, no. 10: 1866. https://doi.org/10.3390/ijerph16101866
APA StyleKim, S., Kim, H., & Lee, J. -T. (2019). Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. International Journal of Environmental Research and Public Health, 16(10), 1866. https://doi.org/10.3390/ijerph16101866