Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
- (1)
- Conventional farming (CF): Rice cultivation pattern with full application of chemical fertilizer;
- (2)
- Green integrated rice-frog farming (GIRF): Rice-frog co-cropping and applied with 50% chemical and 50% organic fertilizer; and,
- (3)
- Organic integrated rice-frog farming (OIRF): Rice-frog co-cropping and applied with 100% organic fertilizer.
2.3. Sampling and Determination
2.4. GWP and GHGI Evaluation
2.5. Statistical Analysis
3. Results
3.1. Environmental Factors in Rice Fields
3.2. CH4 Emissions
3.3. N2O Emissions
3.4. CO2 Emissions
264 108 180 192 162
3.5. Rice Yield and GHGI
3.6. Structural Equation Modeling
3.6.1. The Establishment of Conceptual Modeling
3.6.2. Model Fitting Index Analysis
3.6.3. Model Result Analysis
4. Discussion
4.1. Effects of Frogs on CH4 Emissions
4.2. Uncertainty and Prospect
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xia, L.L.; Xia, Y.Q.; Ma, S.T.; Wang, J.Y.; Wang, S.W.; Zhou, W.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 2016, 13, 4569–4579. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.H.; Zhu, B.; Wang, X.G.; Wang, Y.Q. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system. Soil Biol. Biochem. 2017, 115, 21–34. [Google Scholar] [CrossRef]
- Jiang, Y.; Qian, H.; Wang, L.; Feng, J.F.; Huang, S.; Hungate, B.A.; Kessel, C.V.; Horwath, W.R.; Zhang, X.Y.; Qin, X.B.; et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies. Glob. Chang. Biol. 2019, 25, 686–698. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Liu, S.W.; Hu, Z.Q.; Wu, S.; Li, S.Q.; Li, Z.F.; Zou, J.W. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China. Environ. Sci. Technol. 2016, 19, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.L.; Pu, C.; Zhang, X.Q.; Xue, J.F.; Zhang, R.; Wang, Y.Q.; Lal, R.; Zhang, H.L.; Chen, F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob. Chang. Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Tang, Y.F.; Shen, J.L.; Wang, C.; Chen, C.L.; Yang, J.; Liu, Y.; Chen, X.B.; Li, Y.; Hou, H.J. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol. Fertil. Soils 2018, 54, 885–895. [Google Scholar] [CrossRef]
- IPCC. Climate Change: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Cohn, A.S.; VanWey, L.K.; Spera, S.A.; Mustard, J.F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Chang. 2016, 6, 601. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, C.S.; Peng, X.L.; Li, Y.P.; Hao, Q.J. Effects of the crop rotation on greenhouse gases from flooded paddy fields. Environ. Sci. 2019, 40, 392–400. [Google Scholar]
- Jeong, S.T.; Kim, G.W.; Hwang, H.Y.; Kim, P.J.; Kim, S.Y. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 2018, 613–614, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Kim, G.W.; Kim, P.J.; Kim, S.Y. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crops Res. 2016, 193, 133–142. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.L.; Tang, J.J.; Wu, X.; Li, N.N.; Yuan, Y.G.; Yang, H.S.; Zhang, J.E.; Luo, S.M.; Chen, X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. PNAS 2011, 108, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Liao, Y.L.; Nie, J.; Zhou, X.; Fu, X.Q.; Huang, L. Research and Prospect of Rice-Frog Ecological Cultivation and Breeding Technology Mode. Hunan Agric. Sci. 2017, 3, 74–76. [Google Scholar]
- Cai, C.; Li, G.; Zhu, J.Q.; Peng, L.; Li, J.F.; Wu, Q.X. Effects of Rice-crawfish Rotation on Soil Physicochemical Properties in Jianghan Plain. Acta Pedol. Sin. 2019, 56, 220–230. [Google Scholar]
- Liu, G.P.; Zhang, Y.Z.; Huang, Z.N.; Chen, K.L.; Liu, Y.; Zhu, G.Q.; Fang, B.H. Effects of Rice-Bullfrog Mixed Cultivation on Rice Planthoppers and Rice Yield. Chin. J. Biol. Contr. 2013, 29, 207–213. [Google Scholar]
- Liang, X.; Li, H.; Wang, S.; Ye, Y.; Ji, Y.; Tian, G.; Van Kessel, C.; Linquist, B. Nitrogen management to reduce yield-scaled global warming potential in rice. Field Crops Res. 2013, 146, 66–74. [Google Scholar] [CrossRef]
- Mosier, A.; Kroeze, C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere Glob. Chang. Sci. 2000, 2, 465–473. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Xing, G.X.; Tsuruta, H.; Shi, S.L.; Shen, G.Y.; Du, L.J. Nitrous oxide emissions from paddy soils as affected by incorporation of leguminous green manure and fertilization during double-cropping rice-growing season. Acta Pedol. Sin. 2003, 40, 704–710. [Google Scholar]
- Xie, Y.Q.; Zhang, J.F.; Jiang, H.M.; Yang, J.C.; Deng, S.H.; Li, X.; Guo, J.M.; Li, L.L.; Liu, X.; Zhou, G.Y. Effects of different fertilization practices on greenhouse gas emissions from paddy soil. J. Agro-Environ. Sci. 2015, 34, 578–584. [Google Scholar]
- Bhattacharyya, P.; Sinhababu, D.P.; Roy, K.S.; Dash, P.K.; Sahu, P.K.; Dandapat, R.; Neogi, S.; Mohanty, S. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system. Agric. Ecosyst. Environ. 2013, 176, 53–62. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Linquist, B. Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems. Geoderma 2016, 266, 40–45. [Google Scholar] [CrossRef]
- Yi, X.M.; Yuan, J.; Zhu, Y.H.; Yi, X.J.; Zhao, Q.; Fang, K.K.; Cao, L.K. Comparison of the Abundance and Community Structure of N-Cycling Bacteria in Paddy Rhizosphere Soil under Different Rice Cultivation Patterns. Int. J. Mol. Sci. 2018, 19, 3772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yue, Y.B.; Sha, Z.M.; Li, C.S.; Deng, J.; Zhang, H.L.; Gao, M.F.; Cao, L.K. Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation. Atmos. Environ. 2015, 119, 393–401. [Google Scholar] [CrossRef]
- Yuan, J.; Sha, Z.M.; Hassani, D.; Zhao, Z.; Cao, L.K. Assessing environmental impacts of organic and inorganic fertilizer on daily and seasonal Greenhouse Gases effluxes in rice field. Atmos. Environ. 2017, 155, 119–128. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, Y.K.; Zhu, Y.H.; Cao, L.K. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. Sci. Total Environ. 2018, 627, 770–781. [Google Scholar] [CrossRef]
- Zhou, M.H.; Zhu, B.; Bruggemann, N.; Wang, X.G.; Zheng, X.H.; Butterbach-Bahl, K. Nitrous oxide and methane emissions from a subtropical rice-rapeseed rotation system in China: A 3-year field case study. Agric. Ecosyst. Environ. 2015, 212, 297–309. [Google Scholar] [CrossRef]
- Wang, W.Q.; Sardans, J.; Wang, C.; Zeng, C.S.; Tong, C.; Asensio, D.; Penuelas, J. Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China. Atmos. Environ. 2017, 164, 458–467. [Google Scholar] [CrossRef]
- Shang, Q.Y.; Yang, X.X.; Gao, C.M.; Wu, P.P.; Liu, J.J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Zhong, J.; Fu, Z.Q.; Liu, L.; Zhu, Z.J.; Zheng, H.B. Correlation Analysis of Methane Transport Capacity and Root Characteristics in Rice. Crop 2017, 4, 105–112. [Google Scholar]
- Hoang, T.T.H.; Do, D.T.; Tran, T.T.G.; Ho, T.D.; Rehman, H.U. Incorporation of rice straw mitigates CH4 and N2O emissions in water saving paddy fields of Central Vietnam. Arch. Agron. Soil Sci. 2019, 65, 113–124. [Google Scholar] [CrossRef]
- Zheng, X.; Mei, B.; Wang, Y.; Xie, B.; Wang, Y.; Dong, H.; Xu, H.; Chen, G.; Cai, Z.; Yue, J.; et al. Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008, 311, 211–234. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, Y.S.; Ling, H. A new carrier gas type for accurate measurement of N2O by GC-ECD. Adv. Atmos. Sci. 2010, 27, 1322–1330. [Google Scholar] [CrossRef]
- Li, C.; Salas, W.; DeAngelo, B.; Rose, S. Assessing alternative for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J. Environ. Qual. 2006, 35, 1554–1565. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Guo, Y.; Liu, Q.; Zou, J. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol. Fertil. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Hou, J.T.; Wen, Z.L.; Cheng, Z.J. Structural Equation Model and Its Application; Beijing Educational Science Publishing House: Beijing, China, 2004; pp. 123–178. [Google Scholar]
- Yan, X.Y.; Yagi, K.; Akiyama, H.; Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Chang. Biol. 2005, 11, 1131–1141. [Google Scholar] [CrossRef]
- Peters, M.; Conrad, R. Sequential reduction processes and initiation of CI-h production upon flooding of oxic upland soils. Soil Biol. Biochem. 2006, 28, 371–382. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, G.D.; Lu, C.X.; Ding, X.Z.; Lv, Y. The gas regulation function of rice paddy ecosystems and its value. J. Nat. Resour. 2004, 19, 617–623. [Google Scholar]
- Li, H.; Wang, J.K.; Pei, J.B.; Li, S.Y. Equilibrium relationships of soil organic carbon in the main croplands of northeast china based on structural equation modeling. Acta Ecol. Sin. 2015, 35, 517–525. [Google Scholar]
- Yuan, W.L.; Cao, C.G.; Li, C.F.; Zhan, M.; Cai, M.L.; Wang, J.P. Methane and Nitrous Oxide Emissions from Rice-Fish and Rice-Duck Complex Ecosystems and the Evaluation of Their Economic Significance. Sci. Agric. Sin. 2009, 42, 2052–2060. [Google Scholar] [CrossRef]
- Xu, G.C.; Liu, X.; Wang, Q.S.; Yu, X.C.; Hang, Y.H. Integrated rice-duck farming mitigates the global warming potential in rice season. Sci. Total Environ. 2017, 575, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Zhan, M.; Cao, C.G.; Wang, J.P.; Li, C.F.; Yuan, W.L. Greenhouse gas emission from an integrated rice-duck system and its global warming potentials. Acta Scientiae Circumstantiae 2009, 29, 420–426. [Google Scholar]
- Frei, M.; Becker, K. Integrated rice-fish production and methane emission under greenhouse conditions. Agric. Ecosyst. Environ. 2005, 107, 51–56. [Google Scholar] [CrossRef]
- Datta, A.; Nayak, D.R.; Sinhababu, D.P.; Adhya, T.K. Methane and nitrous oxide emissions from an integrated rainfed rice–fish farming system of Eastern India. Agric. Ecosyst. Environ. 2009, 129, 228–237. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhang, M.M.; Peng, C.L.; Si, G.H.; Zhou, J.X.; Xie, Y.Y.; Yuan, J.F. Effect of rice-cray fish co-culture on greenhouse gases emission in straw-puddled paddy fields. Chin. J. Eco Agric. 2017, 25, 1591–1603. [Google Scholar]
Treatments | Pre-Transplanting | Jointing Stage | Heading Stage | |||
---|---|---|---|---|---|---|
Chinese Milk Vetch | Rapeseed Cake | Bulk Blending Fertilizer | Bio-Organic Fertilizer | Bulk Blending Fertilizer | Urea | |
CF | None | None | 150 | None | 75 | 75 |
GIRF | 22.5 | 127.5 | None | None | 75 | 75 |
OIRF | 22.5 | 127.5 | None | 150 | None | None |
Rice Growth Stages | Dates | Days | Major Farming Management Practices |
---|---|---|---|
Pre-transplanting | 14 May–14 June | 31 | Chinese milk vetch was ploughed in GIRF and OIRF fields (14 May), rapeseed cake was applied 100% in GIRF and OIRF fields, and bulk blending fertilizer was applied 67% in CF fields (14 June). |
Regreening | 15 June–30 June | 15 | |
Tillering | 1 July–22 July | 21 | Tiger frogs were put into GIRF and OIRF fields (4500 and 6000 frogs ha−1 on 1 July). Bulk blending fertilizer were applied 33% in CF and 100% in GIRF, while 100% bio-organic fertilizer in OIRF fields (15 July). |
Jointing | 23 July–12 August | 20 | Weed removal |
Booting | 13 August–31 August | 18 | Urea (100%) was applied in CF and GIRF fields (15 August). |
Heading | 1 September–18 September | 17 | Irrigating water |
Filling | 19 September–9 October | 20 | Weed removal |
Maturing | 10 October–29 October | 19 | Chinese milk vetch was sowed in GIRF and OIRF fields (20 October) |
Harvesting | 14 November | 1 | Rice harvested on 14 November |
Parameters | CF | GIRF | OIRF |
---|---|---|---|
Biomass yield (kg ha−1) | |||
rice yield | 8827.56 a * | 8650.38 a * | 7350.69 b * |
Straw | 30,441.6 a | 31,302.0 a | 26,690.4 a |
Total above-ground | 39,269.16 a | 39,952.38 a | 34,041.09 a |
Plant height (cm) | 103.5 a | 100.8 a | 100.2 a |
Straw stem diameter (mm) | 5.7 a | 5.7 a | 5.8 a |
Tiller number per hill | 13 a | 13 a | 12 a |
Grains per panicle | 86 a | 88 a | 85 a |
Ripened grains (%) | 75% a | 78% a | 80% a |
1000 grain weight (g) | 22 a | 21 a | 20 a |
Rice bulk density (kg L−1) | 0.52 a | 0.55 a | 0.57 a |
Indices Name | Evaluation Criterion | Results | |
---|---|---|---|
Absolute fitting index | CMIN/DF | <3 | 1.188 |
GFI | >0.9 | 0.933 | |
Relative fit index | NFI | >0.9 | 0.961 |
TLI | >0.9 | 0.909 | |
CFI | >0.9 | 0.991 | |
Compact index | IFI | >0.9 | 0.994 |
AIC | The smaller, the better | 29.188 | |
ECVI | The smaller, the better | 4.865 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, K.; Yi, X.; Dai, W.; Gao, H.; Cao, L. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. Int. J. Environ. Res. Public Health 2019, 16, 1930. https://doi.org/10.3390/ijerph16111930
Fang K, Yi X, Dai W, Gao H, Cao L. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. International Journal of Environmental Research and Public Health. 2019; 16(11):1930. https://doi.org/10.3390/ijerph16111930
Chicago/Turabian StyleFang, Kaikai, Xiaomei Yi, Wei Dai, Hui Gao, and Linkui Cao. 2019. "Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions" International Journal of Environmental Research and Public Health 16, no. 11: 1930. https://doi.org/10.3390/ijerph16111930
APA StyleFang, K., Yi, X., Dai, W., Gao, H., & Cao, L. (2019). Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. International Journal of Environmental Research and Public Health, 16(11), 1930. https://doi.org/10.3390/ijerph16111930