Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Exposure Assessment
2.3. Covariate Selection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Department of Health and Human Services Centers for Disease Control and Prevention: 1999–2014 Incidence and Mortality Data. United States Cancer Statistics, National Cancer Institute. WONDER Online Database. Available online: https://wonder.cdc.gov/ (accessed on 26 March 2018).
- Ma, H.; Sun, H.; Sun, X. Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: A SEER analysis. Sci. Rep. 2014, 4, 4227. [Google Scholar] [CrossRef] [PubMed]
- Pulte, D.; Gondos, A.; Brenner, H. Expected long-term survival of patients diagnosed with acute myeloblastic leukemia during 2006–2010. Ann. Oncol. 2010, 21, 335–341. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2018; American Cancer Society: Atlanta, GA, USA, 2018; Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html (accessed on 24 March 2018).
- Haddy, T.B.; Mosher, R.B.; Reaman, G.H. Late effects in long-term survivors after treatment for childhood acute leukemia. Clin. Pediatr. 2009, 48, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Wallace, W.H.; Thompson, L.; Anderson, R.A. Guideline Development, G. Long term follow-up of survivors of childhood cancer: Summary of updated SIGN guidance. BMJ 2013, 346, f1190. [Google Scholar] [CrossRef] [PubMed]
- Barrington-Trimis, J.L.; Cockburn, M.; Metayer, C.; Gauderman, W.J.; Wiemels, J.; McKean-Cowdin, R. Trends in childhood leukemia incidence over two decades from 1992 to 2013. Int. J. Cancer 2017, 140, 1000–1008. [Google Scholar] [CrossRef]
- Xie, Y.; Davies, S.M.; Xiang, Y.; Robison, L.L.; Ross, J.A. Trends in leukemia incidence and survival in the United States (1973–1998). Cancer 2003, 97, 2229–2235. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J. Perspectives on the causes of childhood leukemia. Chem. Biol. Interact. 2012, 196, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, J.K.; Heck, J.E.; Cockburn, M.; Su, J.; Jerrett, M.; Ritz, B. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am. J. Epidemiol. 2013, 178, 1233–1239. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer: Monographs on the Evaluation of Carcinogenic Risks to Humans. 2016, Volume 109, pp. 1–149. Available online: http://monographs.iarc.fr/ENG/Monographs/vol109/index.php (accessed on 25 March 2018).
- Chen, H.; Goldberg, M.S. The effects of outdoor air pollution on chronic illnesses. McGill J. Med. 2009, 12, 58–64. [Google Scholar]
- Health Effects Institute: Traffic-related air pollution: A critical review of the literature on emissions, exposure, and health effects. HEI Spec. Rep. 2010, 17, 1–386.
- Rundell, K.W.; Caviston, R.; Hollenbach, A.M.; Murphy, K. Vehicular air pollution, playgrounds, and youth athletic fields. Inhal. Toxicol. 2006, 18, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Kuhn, T.; Mayo, P.; Hinds, W.C. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 2006, 40, 2531–2536. [Google Scholar] [CrossRef] [PubMed]
- Langholz, B.; Ebi, K.L.; Thomas, D.C.; Peters, J.M.; London, S.J. Traffic Density and the Risk of Childhood Leukemia in a Los Angeles Case-Control Study. Ann. Epidemiol. 2002, 12, 482–487. [Google Scholar] [CrossRef]
- Reynolds, P.; Von Behren, J.; Gunier, R.B.; Goldberg, D.E.; Hertz, A. Residential exposure to traffic in California and childhood cancer. Epidemiology 2004, 15, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Wallace, F.M.; Zhang, L.; Smith, M.T.; Rader, G.; Steinmaus, C. Parental, In Utero, and Early-Life Exposure to Benzene and the Risk of Childhood Leukemia: A Meta-Analysis. Am. J. Epidemiol. 2016, 183, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Danysh, H.E.; Zhang, K.; Mitchell, L.E.; Scheurer, M.E.; Lupo, P.J. Maternal residential proximity to major roadways at delivery and childhood central nervous system tumors. Environ. Res. 2016, 146, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.A.; Feingold, L. Association of childhood cancer with residential traffic density. Scand. J. Work Environ. Health 1989, 360–363. [Google Scholar] [CrossRef]
- Tamayo-Uria, I.; Boldo, E.; García-Pérez, J.; Gómez-Barroso, D.; Romaguera, E.P.; Cirach, M.; Ramis, R. Childhood leukaemia risk and residential proximity to busy roads. Environ. Int. 2018, 121, 332–339. [Google Scholar] [CrossRef]
- Boothe, V.L.; Boehmer, T.K.; Wendel, A.M.; Yip, F.Y. Residential traffic exposure and childhood leukemia: A systematic review and meta-analysis. Am. J. Prev. Med. 2014, 46, 413–422. [Google Scholar] [CrossRef]
- Kim, J.J.; Smorodinsky, S.; Lipsett, M.; Singer, B.C.; Hodgson, A.T.; Ostro, B. Traffic-related air pollution near busy roads: The East Bay Children’s Respiratory Health Study. Am. J. Respir. Crit. Care Med. 2004, 170, 520–526. [Google Scholar] [CrossRef]
- Knox, E.G. Roads, railways, and childhood cancers. J. Epidemiol. Community Health 2006, 60, 136–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, J.E.; Wu, J.; Lombardi, C.; Qiu, J.; Meyers, T.J.; Wilhelm, M.; Cockburn, M.; Ritz, B. Childhood cancer and traffic-related air pollution exposure in pregnancy and early life. Environ. Health Perspect. 2013, 121, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Heck, J.E.; Malagoli, C.; Del Giovane, C.; Vinceti, M. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 36–66. [Google Scholar] [CrossRef] [PubMed]
- Spycher, B.D.; Feller, M.; Roosli, M.; Ammann, R.A.; Diezi, M.; Egger, M.; Kuehni, C.E. Childhood cancer and residential exposure to highways: A nationwide cohort study. Eur. J. Epidemiol. 2015, 30, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Steliarova-Foucher, E.; Stiller, C.; Lacour, B.; Kaatsch, P. International Classification of Childhood Cancer, third edition. Cancer 2005, 103, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Texas National Resources Information System 2014. Maps & Data: Transportation StratMap. Texas Natural Resources Information System. Available online: https://tnris.org/data-catalog/entry/stratmap-transportation/ (accessed on 30 April 2018).
- U.S. Census Bureau. TIGER/Line Files: Technical Documentation; U.S. Census Bureau: Washington, DC, USA, 2007; pp. 88–91. Available online: https://www.census.gov/geo/maps-data/data/tiger-line.html (accessed on 2 April 2018).
- Kumar, S.V.; Lupo, P.J.; Pompeii, L.A.; Danysh, H.E. Maternal Residential Proximity to Major Roadways and Pediatric Embryonal Tumors in Offspring. Int. J. Environ. Res. Public Health 2018, 15, 505. [Google Scholar] [CrossRef] [PubMed]
- Matz, C.J.; Stieb, D.M.; Davis, K.; Egyed, M.; Rose, A.; Chou, B.; Brion, O. Effects of age, season, gender and urban-rural status on time-activity: CanadianHuman Activity Pattern Survey 2 (CHAPS 2). Int. J. Environ. Res. Public Health 2014, 11, 2108–2124. [Google Scholar] [CrossRef]
- Oksuzyan, S.; Crespi, C.M.; Cockburn, M.; Mezei, G.; Kheifets, L. Birth weight and other perinatal characteristics and childhood leukemia in California. Cancer Epidemiol. 2012, 36, e359–e365. [Google Scholar] [CrossRef] [Green Version]
- Maule, M.M.; Merletti, F.; Pastore, G.; Magnani, C.; Richiardi, L. Effects of maternal age and cohort of birth on incidence time trends of childhood acute lymphoblastic leukemia. Cancer Epidemiol. Biomark. Prev. 2007, 16, 347–351. [Google Scholar] [CrossRef]
- Hjalgrim, L.L.; Westergaard, T.; Rostgaard, K.; Schmiegelow, K.; Melbye, M.; Hjalgrim, H.; Engels, E.A. Birth weight as a risk factor for childhood leukemia: A meta-analysis of 18 epidemiologic studies. Am. J. Epidemiol. 2003, 158, 724–735. [Google Scholar] [CrossRef]
- Huang, Q.T.; Gao, Y.F.; Zhong, M.; Yu, Y.H. Preterm Birth and Subsequent Risk of Acute Childhood Leukemia: A Meta-Analysis of Observational Studies. Cell. Physiol. Biochem. 2016, 39, 1229–1238. [Google Scholar] [CrossRef]
- Oksuzyan, S.; Crespi, C.M.; Cockburn, M.; Mezei, G.; Vergara, X.; Kheifets, L. Race/ethnicity and the risk of childhood leukaemia: A case-control study in California. J. Epidemiol. Community Health 2015, 69, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Obel, J.; Dalton, S.; TjOnneland, A.; Hansen, J. Socioeconomic status and risk of childhood leukaemia in Denmark. Scand. J. Public Health 2004, 32, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Adelman, A.S.; McLaughlin, C.C.; Wu, X.C.; Chen, V.W.; Groves, F.D. Urbanisation and incidence of acute lymphocytic leukaemia among United States children aged 0–4. Br. J. Cancer 2005, 92, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Wier, M.L.; Pearl, M.; Kharrazi, M. Gestational age estimation on United States livebirth certificates: A historical overview. Paediatr. Perinat. Epidemiol. 2007, 21, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Peckham-Gregory, E.C.; McClain, K.L.; Allen, C.E.; Scheurer, M.E.; Lupo, P.J. The role of parental and perinatal characteristics on Langerhans cell histiocytosis: Characterizing increased risk among Hispanics. Ann. Epidemiol. 2018, 28, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.D.; Zhang, J. The research implications of the selection of a gestational age estimation method. Paediatr. Perinat. Epidemiol. 2007, 21 (Suppl. 2), 86–96. [Google Scholar] [CrossRef]
- Dietz, P.M.; England, L.J.; Callaghan, W.M.; Pearl, M.; Wier, M.L.; Kharrazi, M. A comparison of LMP-based and ultrasound-based estimates of gestational age using linked California livebirth and prenatal screening records. Paediatr. Perinat. Epidemiol. 2007, 21, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Talge, N.M.; Mudd, L.M.; Sikorskii, A.; Basso, O. United States birth weight reference corrected for implausible gestational age estimates. Pediatrics 2014, 133, 844–853. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. 2010 Geographic Terms and Concepts—Census Tract. 2012. Available online: https://www.census.gov/geo/reference/gtc/gtc_ct.html (accessed on 18 January 2018).
- Harrison, C.J. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br. J. Haematol. 2009, 144, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Zimmermann, M.; Reinhardt, D.; Rasche, M.; von Neuhoff, C.; Alpermann, T.; Dworzak, M.; Perglerova, K.; Zemanova, Z.; Tchinda, J.; et al. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer 2016, 122, 3821–3830. [Google Scholar] [CrossRef] [PubMed]
- Linder, S.H.; Marko, D.; Sexton, K. Cumulative Cancer Risk from Air Pollution in Houston: Disparities in Risk Burden and Social Disadvantage. Environ. Sci. Technol. 2008, 42, 4312–4322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, S.C.; Edwards, S.E.; Schultz, B.D.; Miranda, M.L. Assessing the impact of race, social factors and air pollution on birth outcomes: A population-based study. Environ. Health 2014, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.; Wu, J.; Ong, P.; Winer, A. Structural Disparities of Urban Traffic in Southern California: Implications for Vehicle-Related Air Pollution Exposure in Minority and High-Poverty Neighborhoods. J. Urban Aff. 2016, 26, 565–592. [Google Scholar] [CrossRef]
- Milne, E.; Laurvick, C.L.; Blair, E.; Bower, C.; de Klerk, N. Fetal growth and acute childhood leukemia: Looking beyond birth weight. Am. J. Epidemiol. 2007, 166, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Hertel, O.; Thomsen, B.L.; Olsen, J.H. Air Pollution from Traffic at the Residence of Children with Cancer. Am. J. Epidemiol. 2001, 153, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, P.; Elkin, E.; Scalf, R.; Von Behren, J.; Neutra, R.R. A case-control pilot study of traffic exposures and early childhood leukemia using a geographic information system. Bioelectromagnetics 2001, 22 (Suppl. 5), S58–S68. [Google Scholar] [CrossRef]
- Janitz, A.E.; Campbell, J.E.; Magzamen, S.; Pate, A.; Stoner, J.A.; Peck, J.D. Traffic-related air pollution and childhood acute leukemia in Oklahoma. Environ. Res. 2016, 148, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Houot, J.; Marquant, F.; Goujon, S.; Faure, L.; Honore, C.; Roth, M.H.; Hemon, D.; Clavel, J. Residential Proximity to Heavy-Traffic Roads, Benzene Exposure, and Childhood Leukemia-The GEOCAP Study, 2002–2007. Am. J. Epidemiol. 2015, 182, 685–693. [Google Scholar] [CrossRef]
- Risom, L.; Moller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137. [Google Scholar] [CrossRef]
- Moller, P.; Jacobsen, N.R.; Folkmann, J.K.; Danielsen, P.H.; Mikkelsen, L.; Hemmingsen, J.G.; Vesterdal, L.K.; Forchhammer, L.; Wallin, H.; Loft, S. Role of oxidative damage in toxicity of particulates. Free Radic. Res. 2010, 44, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Herbstman, J.B.; Tang, D.; Zhu, D.; Qu, L.; Sjodin, A.; Li, Z.; Camann, D.; Perera, F.P. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ. Health Perspect. 2012, 120, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Tang, D.; Whyatt, R.; Lederman, S.A.; Jedrychowski, W. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China. Cancer Epidemiol. Biomark. Prev. 2005, 14, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Stenehjem, J.S.; Kjærheim, K.; Bråtveit, M.; Samuelsen, S.O.; Barone-Adesi, F.; Rothman, N.; Lan, Q.; Grimsrud, T.K. Benzene exposure and risk of lymphohaematopoietic cancers in 25,000 offshore oil industry workers. Br. J. Cancer 2015, 112, 1603. [Google Scholar] [CrossRef] [PubMed]
- Van Roosbroeck, S.; Wichmann, J.; Janssen, N.A.; Hoek, G.; van Wijnen, J.H.; Lebret, E.; Brunekreef, B. Long-term personal exposure to traffic-related air pollution among school children, a validation study. Sci. Total Environ. 2006, 368, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Bell, E.M.; Caton, A.R.; Druschel, C.M.; Lin, S. Residential mobility during pregnancy and the potential for ambient air pollution exposure misclassification. Environ. Res. 2010, 110, 162–168. [Google Scholar] [CrossRef]
- Bell, M.L.; Belanger, K. Review of research on residential mobility during pregnancy: Consequences for assessment of prenatal environmental exposures. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 429–438. [Google Scholar] [CrossRef]
- Lupo, P.J.; Symanski, E.; Chan, W.; Mitchell, L.E.; Waller, D.K.; Canfield, M.A.; Langlois, P.H. Differences in exposure assignment between conception and delivery: The impact of maternal mobility. Paediatr. Perinat. Epidemiol. 2010, 24, 200–208. [Google Scholar] [CrossRef]
- Greaves, M.F.; Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 2003, 3, 639–649. [Google Scholar] [CrossRef]
- Forestier, E.; Schmiegelow, K.; Nordic Society of Paediatric, H.; Oncology, N. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J. Pediatr. Hematol. Oncol. 2006, 28, 486–495. [Google Scholar] [CrossRef]
- Puumala, S.E.; Carozza, S.E.; Chow, E.J.; Fox, E.E.; Horel, S.; Johnson, K.J.; McLaughlin, C.; Mueller, B.A.; Reynolds, P.; Von Behren, J.; et al. Childhood Cancer among Twins and Higher Order Multiples. Cancer Epidemiol. Biomark. Prev. 2009, 18, 162–168. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, K.A.; Murphy, M.F.; Bunch, K.J.; Puumala, S.E.; Carozza, S.E.; Chow, E.J.; Mueller, B.A.; McLaughlin, C.C.; Reynolds, P.; Vincent, T.J.; et al. Infant birthweight and risk of childhood cancer: International population-based case control studies of 40,000 cases. Int. J. Epidemiol. 2015, 44, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Carozza, S.E.; Chow, E.J.; Fox, E.E.; Horel, S.; McLaughlin, C.C.; Mueller, B.A.; Puumala, S.E.; Reynolds, P.; Von Behren, J.; et al. Parental age and risk of childhood cancer: A pooled analysis. Epidemiology 2009, 20, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Spector, L.G.; Puumala, S.E.; Carozza, S.E.; Chow, E.J.; Fox, E.E.; Horel, S.; Johnson, K.J.; McLaughlin, C.C.; Reynolds, P.; Von Behren, J.; et al. Cancer risk among children with very low birth weight. Pediatrics 2009, 124, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Danysh, H.E.; Mitchell, L.E.; Zhang, K.; Scheurer, M.E.; Lupo, P.J. Traffic-related air pollution and the incidence of childhood central nervous system tumors: Texas, 2001–2009. Pediatr. Blood Cancer 2015, 62, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Buffler, P.A.; Layefsky, M.; Does, M.B.; Reynolds, P. Control selection strategies in case-control studies of childhood diseases. Am. J. Epidemiol. 2004, 159, 915–921. [Google Scholar] [CrossRef]
- Honein, M.A.; Paulozzi, L.J.; Watkins, M.L. Maternal smoking and birth defects: Validity of birth certificate data for effect estimation. Public Health Rep. 2001, 116, 327–335. [Google Scholar] [CrossRef]
- Vinikoor, L.C.; Messer, L.C.; Laraia, B.A.; Kaufman, J.S. Reliability of variables on the North Carolina birth certificate: A comparison with directly queried values from a cohort study. Paediatr. Perinat. Epidemiol. 2010, 24, 102–112. [Google Scholar] [CrossRef]
- Whitehead, T.P.; Metayer, C.; Wiemels, J.L.; Singer, A.W.; Miller, M.D. Childhood Leukemia and Primary Prevention. Curr. Probl. Pediatr. Adolesc. Health Care 2016, 46, 317–352. [Google Scholar] [CrossRef] [Green Version]
- Danysh, H.E.; Mitchell, L.E.; Zhang, K.; Scheurer, M.E.; Lupo, P.J. Differences in environmental exposure assignment due to residential mobility among children with a central nervous system tumor: Texas, 1995–2009. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 41–46. [Google Scholar] [CrossRef]
Characteristics | Any Leukemia (n = 2030) | ALL (n = 1746) | AML (n = 284) | Controls (n = 20,300) | p-Value |
---|---|---|---|---|---|
Child | |||||
Child’s sex, n (%) | 0.001 | ||||
Male | 1114 (54.9) | 958 (54.9) | 156 (54.9) | 10,258 (50.5) | |
Female | 916 (45.1) | 788 (45.1) | 128 (45.1) | 10,042 (49.5) | |
Age at diagnosis (years), n (%) | |||||
<1 | 180 (8.9) | 105 (6.0) | 75 (26.4) | ||
≥1 to ≤5 | 1377 (67.8) | 1232 (70.6) | 145 (51.1) | ||
>5 to ≤10 | 368 (18.1) | 329 (18.8) | 39 (13.7) | ||
>10 | 105 (5.2) | 80 (4.6) | 25 (8.9) | ||
Season of birth, n (%) | 0.88 | ||||
Summer (June–August) | 535 (26.4) | 457 (26.2) | 78 (27.5) | 5361 (26.4) | |
Fall (September–November) | 520 (25.6) | 444 (25.4) | 76 (26.8) | 5228 (25.8) | |
Winter (December–February) | 506 (25.0) | 429 (24.6) | 77 (27.1) | 4908 (24.2) | |
Spring (March–May) | 469 (23.1) | 416 (23.8) | 53 (18.7) | 4803 (23.7) | |
Term of birth, n (%) | 0.89 | ||||
<37 weeks | 240 (11.8) | 192 (11.0) | 48 (16.9) | 2351 (11.6) | |
37 to <41 weeks | 1553 (76.5) | 1344 (77.0) | 209 (73.6) | 15,525 (76.5) | |
41 to <42 weeks | 156 (7.7) | 140 (8.0) | 16 (5.6) | 1654 (8.2) | |
42 weeks to <44 weeks | 52 (2.7) | 42 (2.4) | 10 (3.5) | 504 (2.5) | |
Unknown | 29 (1.4) | 28 (1.6) | 1 (0.35) | 266 (1.3) | |
Gestational size, n (%) | <0.001 | ||||
Small | 239 (11.8) | 199 (11.4) | 40 (14.1) | 2778 (13.7) | |
Appropriate | 1532 (75.5) | 1316 (75.4) | 216 (76.1) | 15,601 (76.9) | |
Large | 236 (11.6) | 209 (12.0) | 27 (9.5) | 1700 (8.4) | |
Unknown | 23 (1.1) | 22 (1.3) | 1 (0.4) | 213 (1.1) | |
Maternal | |||||
Maternal race/ethnicity, n (%) | <0.001 | ||||
non-Hispanic white | 731 (36.0) | 627 (35.9) | 104 (36.6) | 8118 (40.0) | |
non-Hispanic black | 135 (6.7) | 102 (5.8) | 33 (11.6) | 2595 (12.8) | |
Hispanic | 1085 (53.5) | 952 (54.5) | 133 (46.8) | 8772 (43.2) | |
non-Hispanic other | 79 (3.9) | 65 (3.7) | 14 (4.9) | 815 (4.0) | |
Age at delivery (years), n (%) | <0.001 | ||||
<25 | 766 (37.7) | 663 (38.0) | 103 (36.3) | 8488 (41.8) | |
25–30 | 568 (28.0) | 487 (27.9) | 81 (28.5) | 5565 (27.4) | |
31–35 | 408 (20.1) | 361 (20.7) | 47 (16.6) | 4083 (20.1) | |
≥35 | 288 (14.2) | 235 (13.5) | 53 (18.7) | 2164 (10.7) | |
Education, n (%) | 0.001 | ||||
<High School | 682 (33.6) | 586 (33.6) | 96 (33.8) | 6041 (29.8) | |
Completed High School | 547 (27.0) | 477 (27.3) | 70 (24.7) | 5959 (29.4) | |
≥High School | 778 (38.3) | 662 (37.9) | 116 (40.9) | 8100 (39.9) | |
Unknown | 23 (1.1) | 21 (1.2) | 2 (0.7) | 200 (1.0) | |
Neighborhood at birth | |||||
Urban status, n (%) | 0.96 | ||||
Urban | 1944 (95.8) | 1676 (96.0) | 268 (94.4) | 19,435 (95.7) | |
Rural | 86 (4.2) | 70 (4.0) | 16 (5.6) | 865 (4.3) | |
Area-Level poverty, n (%) | 0.06 | ||||
<15% of households | 1068 (52.6) | 920 (52.7) | 148 (52.1) | 11,121 (54.8) | |
≥15% of households | 962 (47.4) | 826 (47.3) | 136 (47.9) | 9179 (45.2) | |
Maternal proximity to major roads | |||||
Continuous distance (m), mean (SD) | 389.7 (523.5) | 383.0 (506.5) | 430.8 (617.7) | 404.0 (574.2) | 0.28 |
Within 500 m, n (%) | 0.81 | ||||
Exposed | 1551 (76.4) | 1342 (76.9) | 209 (73.6) | 15,462 (76.2) | |
Unexposed | 479 (23.6) | 404 (23.1) | 75 (26.4) | 4838 (23.8) | |
Roadway Density, n (%) a | 0.74 | ||||
Low | 479 (23.6) | 404 (23.1) | 75 (26.4) | 4838 (23.8) | |
Medium | 764 (37.6) | 658 (37.7) | 106 (37.3) | 7767 (38.3) | |
High | 787 (38.8) | 684 (39.2) | 103 (36.3) | 7695 (37.9) |
All Ages | Ages ≥1 to ≤5 | |||||||
---|---|---|---|---|---|---|---|---|
Leukemia Subtype | Cases Mean (SD) | Controls Mean (SD) | OR a (95% CI) b | aOR (95% CI) c | Cases Mean (SD) | Controls Mean (SD) | OR (95% CI) b | aOR (95% CI) c |
ALL | 383.0 m (506.5) | 404.0 m (574.2) | 1.01 (1.00–1.02) | 1.01 (1.00–1.02) | 398.4 m (536.3) | 404.0 m (574.2) | 1.00 (1.00–1.01) | 1.01 (1.00–1.02) |
AML | 430.8 m (617.7) | 404.0 m (574.2) | 1.00 (0.98–1.01) | 1.00 (0.97–1.01) | 386.6 m (569.4) | 404.0 m (574.2) | 1.01 (0.98–1.04) | 1.01 (0.97–1.04) |
All Ages | Ages ≥1 to ≤5 | |||||||
---|---|---|---|---|---|---|---|---|
Proximity to Major Roadway | Cases n (%) | Controls n (%) | OR (95% CI) a | aOR (95% CI) b | Cases n (%) | Controls n (%) | OR (95% CI) a | aOR (95% CI) b |
ALL | ||||||||
>500 m | 404 (23.1) | 4838 (23.8) | Reference (1.00) | Reference (1.00) | 286 (23.2) | 4838 (23.8) | Reference (1.00) | Reference (1.00) |
≤500 m | 1342 (76.9) | 15,462 (76.2) | 1.04 (0.92–1.17) | 1.03 (0.91–1.16) | 946 (76.8) | 15,462 (76.2) | 1.05 (0.92–1.21) | 1.08 (0.94–1.24) |
AML | ||||||||
>500 m | 75 (26.4) | 4838 (23.8) | Reference (1.00) | Reference (1.00) | 33 (22.8) | 4838 (23.8) | Reference (1.00) | Reference (1.00) |
≤500 m | 209 (73.6) | 15,462 (76.2) | 0.88 (0.68–1.15) | 0.84 (0.64–1.11) | 112 (77.2) | 15,462 (76.2) | 1.08 (0.73–1.60) | 1.04 (0.70–1.55) |
All Ages | Ages ≥1 to ≤5 | |||||||
---|---|---|---|---|---|---|---|---|
Roadway Density | Cases n (%) | Controls n (%) | OR (95% CI) a | aOR (95% CI) b | Cases n (%) | Controls n (%) | OR (95% CI) a | aOR (95% CI) b |
ALL | ||||||||
Low | 404 (23.1) | 4838 (23.8) | Reference (1.00) | Reference (1.00) | 286 (23.2) | 4838 (23.8) | Reference (1.00) | Reference (1.00) |
Medium | 658 (37.7) | 7767 (38.3) | 1.01 (0.89–1.15) | 1.00 (0.88–1.14) | 476 (38.6) | 7767 (38.3) | 1.05 (0.90–1.22) | 1.07 (0.92–1.25) |
High | 684 (39.2) | 7695 (37.9) | 1.06 (0.93–1.21) | 1.06 (0.92–1.20) | 470 (38.2) | 7695 (37.9) | 1.06 (0.91–1.23) | 1.09 (0.93–1.28) |
AML | ||||||||
Low | 75 (26.4) | 4838 (23.8) | Reference (1.00) | Reference (1.00) | 33 (22.8) | 4838 (23.8) | Reference (1.00) | Reference (1.00) |
Medium | 106 (37.3) | 7767 (38.3) | 0.89 (0.66–1.20) | 0.86 (0.64–1.16) | 59 (40.7) | 7767 (38.3) | 1.13 (0.74–1.74) | 1.08 (0.70–1.67) |
High | 103 (36.3) | 7695 (37.9) | 0.87 (0.65–1.18) | 0.83 (0.61–1.13) | 53 (36.6) | 7695 (37.9) | 1.03 (0.67–1.60) | 0.99 (0.64–1.55) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peckham-Gregory, E.C.; Ton, M.; Rabin, K.R.; Danysh, H.E.; Scheurer, M.E.; Lupo, P.J. Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011. Int. J. Environ. Res. Public Health 2019, 16, 2029. https://doi.org/10.3390/ijerph16112029
Peckham-Gregory EC, Ton M, Rabin KR, Danysh HE, Scheurer ME, Lupo PJ. Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011. International Journal of Environmental Research and Public Health. 2019; 16(11):2029. https://doi.org/10.3390/ijerph16112029
Chicago/Turabian StylePeckham-Gregory, Erin C., Minh Ton, Karen R. Rabin, Heather E. Danysh, Michael E. Scheurer, and Philip J. Lupo. 2019. "Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011" International Journal of Environmental Research and Public Health 16, no. 11: 2029. https://doi.org/10.3390/ijerph16112029
APA StylePeckham-Gregory, E. C., Ton, M., Rabin, K. R., Danysh, H. E., Scheurer, M. E., & Lupo, P. J. (2019). Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011. International Journal of Environmental Research and Public Health, 16(11), 2029. https://doi.org/10.3390/ijerph16112029