Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview
Abstract
:1. Introduction
2. Toxic Effects of Dispersed Synthetic Dyes
3. Fenton Reaction
3.1. Photo-Fenton Process
3.2. Electro-Fenton Process
3.3. Sono-Fenton Process
4. Non-Iron Metal Catalysts for Hydroxyl Radical-Based Oxidation
5. Metal-Coated Tubular Reactors
6. Sulfate Radical-Based Catalytic Oxidation
7. Factors Affecting Catalytic Activity
7.1. pH
7.2. Temperature
7.3. The Concentration of the Oxidant
7.4. The Initial Concentration of Dye
7.5. Reaction Time
8. Conclusions
Funding
Conflicts of Interest
References
- Arena, F.; Chio, R.; Gumina, B.; Spadaro, L.; Trunfio, G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg. Chimica Acta 2015, 431, 101–109. [Google Scholar] [CrossRef]
- Arena, F.; Italiano, C.; Ferrante, G.D.; Trunfio, G.; Spadaro, L. A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Appl. Catal. B Environ. 2014, 144, 292–299. [Google Scholar] [CrossRef]
- Arena, F.; Lombardo, D.; Ferrante, G.D.; Italiano, C.; Spadaro, L.; Trunfio, G. Highly effective oxide catalyst for the detoxification of oil wastewaters by the wet air oxidation process. Desalin. Water Treatment 2015, 53, 1018–1023. [Google Scholar] [CrossRef]
- Arena, F.; Chio, R.; Gumina, B.; Spadaro, L.; Trunfio, G. Catalytic wet air oxidation (CWAO) of industrial wastewaters: Mechanistic evidences, catalyst development and kinetic modeling. In Frontiers International Conference on Wastewater Treatment and Modelling; Springer: Cham, Switerland, 2017; Volume 4, pp. 349–353. [Google Scholar]
- Shukla, S.P.; Mohan, D. Toxicity of disperse dyes and its removal from wastewater using various adsorbents: A review. Res. J. Environ. Toxicol. 2017, 11, 72–89. [Google Scholar]
- Uday, U.S.P.; Bandyopadhyay, T.K.; Bhunia, B. Bioremediation and detoxification technology for treatment of dye(s) from textile effluent. In Textile Wastewater Treatment; IntechOpen: London, UK, 2016; pp. 75–92. ISBN 978-953-51-2543-3. [Google Scholar]
- Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Sud, D. Photodegradation of commercial dye, CI reactive blue 160 using ZnO nanopowder: Degradation pathway and identification of intermediates by GC/MS. Sep. Purif. Technol. 2012, 85, 112–119. [Google Scholar] [CrossRef]
- Champagne, P.; Nesheim, M.E.; Ramsay, J.A. Effect of a non-ionic surfactant, Merpol, on dye decolorization of reactive blue 19 by laccase. Enzym. Microb. Technol. 2010, 46, 147–152. [Google Scholar] [CrossRef]
- Mansoorian, H.J.; Bazrafshan, E.; Yari, A.; Alizadeh, M. Removal of azo dyes from aqueous solution using Fenton and modified Fenton processes. Health Scope 2014, 3, e15507. [Google Scholar] [CrossRef]
- Chander, R.; Naveen, S.; Arora, K.; Kothari, R. Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2019; ISBN 9789811072833. [Google Scholar]
- Bharagava, R.N. Emerging and Eco-Friendly Approaches for Waste Management; Springer: Singapore, 2019; ISBN 9789811086687. [Google Scholar]
- Jorge, A.; Rosa, M.; Garcia, V.S.G.; Boiani, F.; Melo, C.G.; Pereira, M.C.; Borrely, S.I. Toxicity and environmental impacts approached in the dyeing of polyamide, polyester and cotton knits. J. Environ. Chem. Eng. 2019, 7, 102973. [Google Scholar]
- Mahalingam, S.; Ramasamy, J. Enhanced photocatalytic degradation of synthetic dyes and industrial dye wastewater by hydrothermally synthesized G–CuO–Co3O4 hybrid nanocomposites under visible light irradiation. J. Clust. Sci. 2018, 29, 235–250. [Google Scholar] [CrossRef]
- Ganzenko, O.; Trellu, C.; Papirio, S.; Oturan, N.; Huguenot, D.; Van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Bioelectro-Fenton: Evaluation of a combined biological–advanced oxidation treatment for pharmaceutical wastewater. Environ. Sci. Pollut. Res. 2017, 25, 20283–20292. [Google Scholar] [CrossRef] [PubMed]
- Ganzenko, O.; Huguenot, D.; Van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Electrochemical advanced oxidation and biological processes for wastewater treatment: A review of the combined approaches. Environ. Sci. Pollut. Res. 2014, 21, 8493–8524. [Google Scholar] [CrossRef] [PubMed]
- Madrakian, T.; Afkhami, A.; Ahmadi, M. Simple in-situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere 2013, 90, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Hao, H.; Duc, L.; Ibney, F.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.E.; Firmino, P.I.; dos Santos, A.B. Impact of the redox mediator sodium anthraquinone-2, 6-disulphonate (AQDS) on the reductive decolourisation of the azo dye reactive red 2 (RR2) in one and two-stage anaerobic systems. Bioresour. Technol. 2012, 121, 1–7. [Google Scholar] [CrossRef]
- Shah, P.D.; Dave, S.R.; Rao, M.S. Biodegradation enzymatic degradation of textile dye reactive orange 13 by newly isolated bacterial strain alcaligenes faecalis PMS-1. Int. Biodeterior. Biodegrad. 2012, 69, 41–50. [Google Scholar] [CrossRef]
- De Oliveira, D.M.; Cavalcante, R.P.; De Melo, L.; Sans, C.; Esplugas, S. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV 254), UV 254/H2O2, Fenton, and photo-Fenton processes. Environ. Sci. Pollut. Res. 2019, 26, 4348–4366. [Google Scholar] [CrossRef]
- Richardson, S.D.; Kimura, S.Y. Environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environ. Technol. Innov. 2017, 8, 40–56. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2013, 2, 557–572. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Wang, T.; Huang, H.; Chen, Y. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B Environ. 2019, 245, 410–419. [Google Scholar] [CrossRef]
- Zhang, L.P.; Liu, Z.; Faraj, Y.; Zhao, Y.; Zhuang, R.; Xie, R.; Ju, X.; Wang, W.; Chu, L. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants. J. Memb. Sci. 2018, 573, 493–503. [Google Scholar] [CrossRef]
- Lyu, L.; Han, M.; Cao, W.; Gao, Y.; Zeng, Q.; Yu, G.; Hunag, X.; Hu, C. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites. Environ. Sci. Nano 2019, 6, 798–808. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Tian, P.; Sheng, Y.; Xu, J.; Han, Y. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl. Catal. B Environ. 2018, 244, 1–10. [Google Scholar] [CrossRef]
- Matavos-aramyan, S.; Moussavi, M. Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control—A review. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 1–18. [Google Scholar]
- Miller, M.E. Series in Display Science and Technology Color in Electronic Display Systems; Springer: Switzerland, 2019; ISBN 9783030028336. [Google Scholar]
- Moussavi, G.; Mahmoudi, M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 2009, 168, 806–812. [Google Scholar] [CrossRef]
- Radi, M.A.; Mirjalili, N.N.M.; Moghadam, M.R. Ultrasound-assisted electrochemical decolorization of anthraquinone dye C.I reactive blue 49, its optimization and synergic effect: A comparative study. Int. J. Environ. Sci. Technol. 2019, 16, 2455–2464. [Google Scholar] [CrossRef]
- Gurses, A.; Acikyildiz, M.; Gunes, K.; Gurses, M.S. Dyes and pigments: Their structure and properties; Springer: Cham, Switerland, 2016; ISBN 9783319338903. [Google Scholar]
- Oros, G.; Forgacs, E.; Cserha, T. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar]
- Nidheesh, P.V.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 2012, 299, 1–15. [Google Scholar] [CrossRef]
- Xu, H.; Sun, X.; Wang, S.; Song, C.; Wang, S. Development of laccase/graphene oxide membrane for enhanced. Sep. Purif. Technol. 2018, 204, 255–260. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Senthilvelan, T.; Panda, R.C. Degradation of azo dyes by laccase: Biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy 2015, 17, 1443–1456. [Google Scholar] [CrossRef]
- Carmen, Z.; Daniela, S. Textile organic dyes; characteristics, polluting effects and separation/elimination procedures from industrial effluents; a critical overview. In Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update; IntechOpen: London, UK, 2012; ISBN 9789533079172. [Google Scholar]
- Balapure, K.; Bhatt, N.; Madamwar, D. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol. 2015, 175, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Ayaz, M.; Ali, F.; Saeed, A.; Khurshid, A.; Shabir, G.; Ahmad, T.; Asad, S.; Kazmi, R.; Khan, H.A. Synthesis of symmetric bridged bis-pyrazolone based metal complex acid dyes and their applications on leather. J. Fluoresc. 2018, 28, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Raut, S.; Bandyopadhyay, P. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 2016, 30, 112–133. [Google Scholar]
- Solís, M.; Solís, A.; Inés, H.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Sudha, M.; Saranya, A.; Selvakumar, G.; Sivakumar, N. Microbial degradation of Azo Dyes: A review. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 670–690. [Google Scholar]
- Delclos, K.B.; Tarpley, W.G.; Miller, E.C.; Miller, J.A. 4-aminoazobenzene and N,/N-dimethyl-4-aminoazobenzene as equipotent hepatic carcinogens in male C57BL/6x C3H/He F1 mice and characterization of A/-(deoxyguanosin-8-yl)-4-aminoazobenzene as the major persistent hepatic DMA-bound dye in these mice. Cancer Res. 1984, 44, 2540–2550. [Google Scholar] [PubMed]
- Cohen, S.M.; Boobis, A.R.; Dellarco, V.L.; Doe, J.E.; Fenner-Crisp, P.A.; Moretto, A.; Pastoor, T.P.; Schoeny, R.S.; Seed, J.G.; Wolf, D.C. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul. Toxicol. Pharmacol. 2019, 103, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Letters, C.; Sendai, H.C. Mutagenicity of metarolites of carcinogenic aminoazo dyes. Cancer Lett. 1979, 8, 71–76. [Google Scholar]
- Thomas, N.S.; George, K.; Namasivayam, N. Molecular aspects and chemoprevention of dimethylaminoazobenzene-induced hepatocarcinogenesis: A review. Hepatol. Res. 2016, 46, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, F.; Wang, S. Binding of reactive brilliant red to human serum albumin: Insights into the molecular toxicity of sulfonic azo dyes. Protein Pept. Lett. 2010, 17, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Sun, L.; Miao, K.; Wu, Y.; Fan, L.J. Detection of sudan dyes based on inner filter effect with reusable conjugated polymer fibrous membranes. ACS Appl. Mater. Interfaces 2018, 10, 8287–8295. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.; Rehman, A. Carcinogenic potential of arylamine N-acetyltransferase in Asian populations. J. Cancer Res. Pract. 2018, 5, 131–135. [Google Scholar] [CrossRef]
- Yang, B.; Gao, Y.; Yan, D.; Xu, H.; Wang, J. Degradation characteristics of color index direct blue 15 dye using iron-carbon micro-electrolysis coupled with H2O2. Int. J. Environ. Res. Public Health 2018, 15, 1523. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; White, J.M.L. Epidemiological data on consumer allergy to p-phenylenediamine. Contact Dermat. 2008, 59, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Balachandramohan, J.; Anandan, S.; Sivasankar, T. A simple approach for the sonochemical synthesis of Fe3O4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. Ultrason. Sonochemistry 2018, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.B.; Ayed-ajmi, Y.; Mosrati, R.; Corroler, D.; Ghedira, K.; Barillier, D.; Chekir-ghedira, L. Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ. Sci. Pollut. Res. 2010, 17, 1371–1378. [Google Scholar] [CrossRef]
- Carreon, T.; Hein, M.J.; Viet, S.M.; Hanley, K.W.; Ruder, A.M.; Ward, E.M. Increased bladder cancer risk among workers exposed to o-toluidine and aniline: A reanalysis. Occup. Environ. Med. 2010, 67, 348–351. [Google Scholar] [CrossRef]
- Morton, L.D.; Youssef, A.F.; Lloyd, E.; Kiorpes, A.L.; Goldsworthy, T.L.; Fort, F.L. Safety evaluation; food & chemical evaluation of carcinogenic responses in the Eker rat following short-term exposure to selected nephrotoxins and carcinogens. Toxicol. Pathalogy 2002, 30, 559–564. [Google Scholar]
- Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319–329. [Google Scholar] [CrossRef]
- National Toxicology Program. Bioassay of 2-Nitro-p-phenylenediamine for Possible Carcinogenicity. Natl. Cancer Inst. Carcinog. Tech. Rep. Ser. 1979, 169, 1. [Google Scholar]
- Brüschweiler, B.J.; Merlot, C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul. Toxicol. Pharmacol. 2017, 88, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Hollert, H.; Tarcai, Z.; Deutschmann, B.; Seiler, T. Science of the total environment integrating bioassays, chemical analysis and in silico techniques to identify genotoxicants in surface water. Sci. Total Environ. 2019, 650, 3084–3092. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.N. Microbial Degradation of Synthetic Dyes in Wastewaters; Springer: Switzerland, 2016; ISBN 9783319109411. [Google Scholar]
- Dasgupta, N.; Lichtfouse, E. Nanoscience and Biotechnology for Environmental Applications; Springer: Switzerland, 2019; ISBN 9783319979212. [Google Scholar]
- Deliyanni, E.A. Activated carbon supported MnO2 for catalytic degradation of reactive black. Colloids Surf. A 2019, 566, 166–175. [Google Scholar]
- Naseem, K.; Begum, R.; Farooqi, Z.H. Catalytic reduction of 2-nitroaniline: A review. Environ. Sci. Pollut. Res. 2017, 24, 6446–6460. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Khalid, A.; Arshad, M.; Mahmood, T.; Crowley, D.E. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit. Rev. Biotechnol. 2016, 36, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Maria, F.; Chequer, D.; Mescoloto, T.; De Felício, R.; Valnice, M.; Zanoni, B.; Maria, H.; Peporine, N.; Palma, D.; Oliveira, D. Toxicology in vitro; the azo dye disperse red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol. Vitr. 2015, 29, 1906–1915. [Google Scholar]
- Muthu, S.S. Textile science and clothing technology. In Detox Fashion; Springer: Hong Kong, China, 2018; ISBN 9789811047794. [Google Scholar]
- Watanabe, T.; Hirayama, T.; Fukui, S. The mutagenic modulating effect of p-phenylenediamine on the oxidation of o–or m–phenylenediamine with hydrogen peroxide in the Salmonella test. Mutat. Res. Lett. 1990, 245, 15–22. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Malladi, R.S.; Nargund, S.L.; Shukla, S.S.; Aminabhavi, T.M. Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchem. J. 2019, 146, 387–392. [Google Scholar] [CrossRef]
- Chung, K.; Kirkovsky, L.; Kirkovsky, A.; Purcell, W.P. Review of mutagenicity of monocyclic aromatic amines: Quantitative structure—Activity relationships. Mutat. Res./Rev. Mutat. Res. 1997, 387, 1–16. [Google Scholar] [CrossRef]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2018, 362, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J.; Oliveros, E.; Mackay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Haber, F.; Weiss, J. The Catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond. A 1934, 147, 332–351. [Google Scholar]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for advanced oxidation processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Glaze, W.H.; Kang, J.; Douglas, H. Ozone: Science & engineering: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. J. Int. Ozone Assoc. 1987, 9, 335–352. [Google Scholar]
- Hoigne, J. Inter-calibration of OH radical sources and water quality. Water Sci. Technol. 1997, 35, 1–8. [Google Scholar] [CrossRef]
- Lloyd, R.V.; Hanna, P.M.; Mason, R.P. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic. Biol. Med. 1997, 22, 885–888. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, Y.; Kim, S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci. Technol. 2001, 44, 15–22. [Google Scholar] [CrossRef]
- Rigg, T.; Taylor, W.; Weiss, J. The rate constant of the reaction between hydrogen peroxide and ferrous ions. J. Chem. Phys. 1954, 22, 575–577. [Google Scholar] [CrossRef]
- Jones, A.B.; Walling, C. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. effect of organic substrates. J. Am. Chem. Soc. 1973, 591, 2987–2991. [Google Scholar]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B.; Buxton, G.V.; Greenstock, C.L.; Helman, P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in Aqueous Solution. J. Phys. Chern. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Arnold, S.M.; Hickey, W.J.; Harris, R.F. Degradation of Atrazine by Fenton’s Reagent: Condition Optimization and Product. Environ. Sci. Technol. 1995, 29, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, M.; Qourzal, S.; Barka, N.; Assabbane, A. Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Sep. Purif. Technol. 2008, 61, 103–108. [Google Scholar] [CrossRef]
- Zhao, C.; Arroyo-mora, L.E.; Decaprio, A.P.; Sharma, V.K.; Dionysiou, D.D.; Shea, K.E.O. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe (III)-oxalate under UV and visible light treatment. Water Res. 2014, 67, 144–153. [Google Scholar] [CrossRef]
- De Luna, L.A.V.; Thiago, H.G.; Pupo, R.F.; Kummrow, F.; Umbuzeiro, G.A. Aquatic toxicity of dyes before and after photo-Fenton treatment. J. Hazard. Mater. 2014, 276, 332–338. [Google Scholar] [CrossRef]
- Voelker, B.M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol. 2003, 37, 1150–1158. [Google Scholar]
- Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B Environ. 2019, 245, 130–142. [Google Scholar] [CrossRef]
- Hammouda, S.B.; Salazar, C.; Zhao, F.; Ramasamy, D.L.; Laklova, E.; Iftekhar, S.; Babu, I.; Sillanpää, M. Efficient heterogeneous electro-Fenton incineration of a contaminant of emergent concern-cotinine- in aqueous medium using the magnetic double perovskite oxide Sr2FeCuO6 as a highly stable catalayst: Degradation kinetics and oxidation products. Appl. Catal. B Environ. 2018, 240, 201–214. [Google Scholar] [CrossRef]
- Meijide, J.; Pazos, M.; Sanromán, M.Á. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environ. Sci. Pollut. Res. 2019, 26, 3145–3156. [Google Scholar] [CrossRef] [PubMed]
- Zárate-Guzmán, A.I.; González-Gutiérrez, L.V.; Godínez, L.A.; Carrasco-Marín, F.; Romero-Cano, L.A. Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H2O2 electro-generation as clean technology for wastewater treatment. Chemosphere 2019, 224, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xi, Y.; Tian, H.; Fang, J.; Quan, X.; Pei, Y. Effects of reaction conditions and liquid property on degradation of phenol by RGO/α-FeOOH supported on Al-MCM catalyst in heterogeneous photo-Fenton system. Catal. Today 2019, in press. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, G.; Wang, W.; Yu, X.; Yu, F.; Zhang, Q.; Zhou, M. A new type of continuous-flow heterogeneous electro-Fenton reactor for tartrazine degradation. Sep. Purif. Technol. 2018, 208, 76–82. [Google Scholar] [CrossRef]
- Zhou, M.; Oturan, M.A.; Sires, I. Electro-Fenton Process, New Trends and Scale Up; Springer: Singapore, 2018; ISBN 9789811064050. [Google Scholar]
- Qiu, B.; Deng, Y.; Du, M.; Xing, M.; Zhang, J. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance. Sci. Rep. 2016, 6, 29099. [Google Scholar] [CrossRef] [Green Version]
- Oladipo, A.A.; Ifebajo, A.O.; Gazi, M. Magnetic LDH-based CoO–NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via enton-like reactions. Appl. Catal. B Environ. 2018, 243, 243–252. [Google Scholar] [CrossRef]
- Yu, X.; Lin, X.; Feng, W.; Li, W. Enhanced catalytic performance of a bio-templated TiO2 UV-Fenton system on the degradation of tetracycline. Appl. Surf. Sci. 2019, 465, 223–231. [Google Scholar] [CrossRef]
- Soon, A.N.; Hameed, B.H. General degradation of acid blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous Photo-Fenton catalyst. Appl. Catal. A Gen. 2013, 450, 96–105. [Google Scholar] [CrossRef]
- Gonzalez-Olmos, R.; Martin, M.J.; Georgi, A.; Kopinke, F.; Oller, I. Applied Catalysis B: Environmental Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl. Catal. B Environ. 2012, 125, 51–58. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, M.; Oturan, N.; Li, Y.; Su, P.; Oturan, M.A. Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2,4-D from water by iron-free electrochemical advanced oxidation. Electrochim. Acta 2018, 297, 582–592. [Google Scholar] [CrossRef]
- Mart, F.; Pariente, M.I.; Angel, J. Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol. J. Chem. Technol. Biotechnol. 2012, 87, 880–886. [Google Scholar]
- Grisales, C.M.; Salazar, L.M.; Garcia, D.P. Treatment of synthetic dye baths by Fenton processes: Evaluation of their environmental footprint through life cycle assessment. Environ. Sci. Pollut. R. 2019, 26, 4300–4311. [Google Scholar] [CrossRef] [PubMed]
- Tarkwa, J.B.; Oturan, N.; Acayanka, E.; Laminsi, S.; Oturan, M.A. Photo-Fenton oxidation of Orange G azo dye: Process optimization and mineralization mechanism. Environ. Chem. Lett. 2018, 17, 473–479. [Google Scholar] [CrossRef]
- Goi, A.; Trapido, M. Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: A comparative study. Chemosphere 2002, 46, 913–922. [Google Scholar] [CrossRef]
- Ameta, R.; Chohadia, A.K.; Jain, A.; Punjabi, P.B. Advanced Oxidation Processes for Wastewater Treatment: Fenton and Photo-Fenton Processes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 49–87. ISBN 9780128104996. [Google Scholar]
- Shima, Q.; Pouran, R.; Aziz, A.R.A.; Mohd, W.; Wan, A. Review on the advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2014, 21, 53–69. [Google Scholar]
- Malato, S.; Maldonado, M.I.; Fernández-Ibáñez, P.; Oller, I.; Polo, I.; Sánchez-Moreno, R. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma solar de Almeria. Mater. Sci. Semicond. Process. 2015, 42, 15–23. [Google Scholar] [CrossRef]
- Spuhler, D.; Andre, J. The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl. Catal. B Environ. 2010, 96, 126–141. [Google Scholar] [CrossRef]
- Faust, B.C.; Hoigne, J. Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ. Part A Gen. Top. 1990, 24, 79–89. [Google Scholar] [CrossRef]
- Marinas, A.; Marinas, J.M.; Urbano, F.J. Comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis. Appl. Catal. B Environ. 2012, 127, 316–322. [Google Scholar]
- Hermosilla, D.; Cortijo, M.; Pao, C. Optimizing the treatment of land fill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ. 2009, 407, 3473–3481. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Gupta, R.; Sharma, R.K. Green and Sustainable Pathways for Wastewater Purification; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128147900. [Google Scholar]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.H. Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem. Eng. J. 2010, 160, 199–206. [Google Scholar]
- Iurascu, B.; Siminiceanu, I.; Vione, D.; Vicente, M.A.; Gil, A.; Giuria, V.P.; Torino, I.-; Analitica, C. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res. 2009, 43, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Tayade, R.J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Ind. Eng. Chem. Res. 2014, 53, 2073–2084. [Google Scholar] [CrossRef]
- Pliego, G.; Xekoukoulotakis, N.; Venieri, D.; Zazo, J.A.; Casas, J.A.; Rodriguez, J.; Mantzavinos, D. Complete degradation of the persistent anti-depressant sertraline in aqueous solution by solar photo-Fenton oxidation. J. Chem. Technol. Biotechnol. 2014, 89, 814–818. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, J.; Fan, C.; Peng, M.; Komarneni, S. Enhancement of photo-fenton-like degradation of orange II by MnO2/NiO nanocomposite with the synergistic effect from bisulfite. J. Alloys Compd. 2019, 785, 343–349. [Google Scholar] [CrossRef]
- Kuo, W.S.; Wu, L.N. Fenton degradation of 4-chlorophenol contaminated water promoted by solar irradiation. Sol. Energy 2010, 84, 59–65. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Lei, J.; Liu, Y.; Zhang, J. Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in-situ-generated H2O2. Appl. Catal. B Environ. 2019, 241, 367–374. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Boopathy, R.; Gupta, V.K.; Sekaran, G. Preparation, characterizations and its application of heterogeneous Fenton catalyst for the treatment of synthetic phenol solution. J. Mol. Liq. 2013, 177, 402–408. [Google Scholar] [CrossRef]
- Lagori, G.; Rocca, J.P.; Brulat, N.; Merigo, E.; Vescovi, P. Comparison of two different laser wavelengths’ dental bleaching results by photo-Fenton reaction: In vitro study. Laser Med. Sci. 2015, 30, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Cruz, N.D.; Esplugas, S.; Grandjean, D.; Alencastro, L.F.; Pulgarin, C. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Res. 2012, 6, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.R.; Maniero, M.G.; De Araújo, R.N. A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manag. 2012, 110, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Abdul, M.; Khan, N.; Siddique, M.; Wahid, F.; Khan, R. Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason. Sonochemistry 2015, 26, 370–377. [Google Scholar]
- Silva, L.G.M.; Moreira, F.C.; Souza, A.A.U.; Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. J. Clean. Prod. 2018, 198, 430–442. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- He, H.; Zhou, Z. Electro-Fenton process for water and wastewater treatment. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2100–2131. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R. Degradation of dyes from aqueous solution by Fenton processes: A review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.; Monllor-satoca, D.; Kim, K.; Lee, W. Homogeneous photocatalytic Fe3+/Fe2+ redox cycle for simultaneous Cr(VI) reduction and organic pollutant oxidation: Roles of hydroxyl radical and degradation intermediates. J. Hazard. Mater. 2018, in press. [Google Scholar] [CrossRef]
- Sires, I.; Garrido, J.A.; Rodríguez, R.M.; Brillas, E.; Oturan, N.; Oturan, M.A.; Mar, R. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B Environ. 2007, 72, 382–394. [Google Scholar] [CrossRef]
- Hammami, S.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M.A. Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. J. Electroanal. Chem. 2007, 610, 75–84. [Google Scholar] [CrossRef]
- Wang, A.; Qu, J.; Ru, J.; Liu, H.; Ge, J. Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 2005, 65, 227–233. [Google Scholar] [CrossRef]
- Ali, O.; Şahin, Y.; Koparal, A.S.; Oturan, M.A. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J. Electroanal. Chem. 2008, 616, 71–78. [Google Scholar]
- Labiadh, L.; Oturan, M.A.; Panizza, M.; Ben, N.; Ammar, S. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J. Hazard. Mater. 2015, 297, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 2009, 43, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Meas-vong, Y.; Rodrı, F.J.; Chapman, T.W.; Maldonado, M.I.; God, L.A. In-situ electrochemical and photo-electrochemical generation of the fenton reagent: A potentially important new water treatment technology. Water Res. 2006, 40, 1754–1762. [Google Scholar]
- Zhang, H.; Fei, C.; Zhang, D.; Tang, F. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater. 2007, 145, 227–232. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, M.; Zhou, L.; Peng, R. A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ. Sci. Technol. Lett. 2014, 1, 320–324. [Google Scholar] [CrossRef]
- Nurhayati, E.; Yang, H.; Chen, C.; Liu, C.; Juang, Y. Electro-photocatalytic Fenton decolorization of orange G using mesoporous TiO2/stainless steel mesh photo-electrode prepared by the sol-gel dip-coating method. Int. J. Electrochem. Sci. 2016, 11, 3615–3632. [Google Scholar] [CrossRef]
- Liu, W.; Ai, Z.; Zhang, L. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J. Hazard. Mater. 2012, 243, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Rosales, E.; Iglesias, O.; Pazos, M.; Sanromán, M.A. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J. Hazard. Mater. 2012, 213–214, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Bocos, E.; Pazos, M.; Sanromán, M.A. Electro-Fenton decolourization of dyes in batch mode by the use of catalytic activity of iron loaded hydrogels. J. Chem. Technol. Biotechnol. 2014, 89, 1235–1242. [Google Scholar] [CrossRef]
- Rostamizadeh, M.; Jafarizad, A.; Gharibian, S. High efficient decolorization of reactive red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in electro-Fenton reaction. Sep. Purif. Technol. 2017, 192, 340–347. [Google Scholar] [CrossRef]
- Qiao, N.; Chang, J.; Hu, M.; Ma, H. Novel bentonite particle electrodes based on Fenton catalyst and its application in orange II removal. Desalin. Water Treat. 2016, 57, 17030–17038. [Google Scholar] [CrossRef]
- Gogate, P.R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward. Ultrason. Sonochemistry 2008, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, Y.G. Perovskite-like catalysts LaBO3 (B=Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Appl. Catal. B Environ. 2001, 180, 4681–4715. [Google Scholar]
- Kerabchi, N.; Merouani, S.; Hamdaoui, O. Relationship between liquid depth and the acoustic generation of hydrogen: Design aspect for large cavitational reactors with special focus on the role of the wave attenuation. Int. J. Green Energy 2019, 16, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zou, H.Y.; Ning, X.A.; Lin, M.Q.; Chen, C.M.; An, T.C.; Sun, J. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge. Environ. Geochem. Health 2018, 40, 1867–1876. [Google Scholar] [CrossRef]
- Liang, J.; Komarov, S.; Hayashi, N.; Kasai, E. Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton’s reagent. J. Mater. Cycles Waste Manag. 2007, 9, 47–55. [Google Scholar] [CrossRef]
- Wu, Z.; Yuste-córdoba, F.J.; Cintas, P.; Wu, Z.; Bo, L. Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes. Ultrason. Sonochemistry 2017, 40, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R.; Tau, A. Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron (II, III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Separ. Purif. Technol. 2019, 210, 563–573. [Google Scholar] [CrossRef]
- Khataee, A.; Rad, T.S.; Vahid, B.; Khorram, S. Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process. Ultrason. Sonochemistry 2016, 33, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Ning, X.; Wang, Y.; Sun, J.; Hong, Y. Sono-advanced Fenton-like degradation of aromatic amines in textile dyeing sludge: Efficiency and mechanisms. Environ. Sci. Pollut. Res. 2019, 26, 7810–7820. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.; Farooq, R.; Price, G.J. Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19. Ultrason. Sonochemistry 2014, 21, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al, T.J.; Hossein, M.; Edris, K.; Ayat, B.; Panahi, H.; Fernandes, M. Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using box-Behnken response surface methodology. Catal. Lett. 2019, 149, 1186–1196. [Google Scholar]
- Ammar, H.B. Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion. Ultrason. Sonochemistry 2016, 33, 164–169. [Google Scholar] [CrossRef]
- Dukkanci, M. Heterogeneous sonocatalytic degradation of bisphenol-A and the influence of the reaction parameters and ultrasonic frequency. Water Sci. Technol. 2019, in press. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Chakma, S. Mechanistic investigation in degradation mechanism of 5-fluorouracil using graphitic carbon nitride. Ultrason. Sonochemistry 2019, 50, 311–321. [Google Scholar] [CrossRef]
- Elshafei, G.M.S.; Yehia, F.Z.; Dimitry, O.I.H.; Badawi, A.M.; Eshaq, G. Ultrasonic assisted-Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxides of Fe and Cu. Ultrason. Sonochemistry 2014, 21, 1358–1365. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di, K.; Dumontel, B.; Garino, N. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Vaishnave, P.; Kumar, A.; Ameta, R.; Punjabi, P.B.; Ameta, S.C. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents. Arab. J. Chem. 2012, 7, 981–985. [Google Scholar] [CrossRef]
- Alekhina, M.B.; Khabirova, K.A.; Kon, T.V.; Prosvirin, I.P. Y-Type zeolites for the catalytic oxidative degradation of organic azo dyes in wastewater. Kinet. Catal. 2017, 58, 506–512. [Google Scholar] [CrossRef]
- Taran, O.P.; Zagoruiko, A.N. Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: Reaction kinetics. Res. Chem. Intermed. 2015, 41, 9521–9537. [Google Scholar] [CrossRef]
- Gupta, V.; Rakesh, M. Catalytic wet peroxide oxidation (CWPO) of 2-hydroxybenzoic acid and contaminated industrial effluent using LnMO3(Ln= La or Pr and M= Fe or Fe-Co). J. Water Process Eng. 2019, 27, 58–66. [Google Scholar] [CrossRef]
- Shukla, P.; Wang, S.; Singh, K.; Ang, H.M.; Tadé, M.O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B, Environ. 2010, 99, 163–169. [Google Scholar] [CrossRef]
- Alekhina, M.B.; Papkova, M.V.; Kon, T.V.; Kutepov, B.I. Catalysts based on NaY zeolite for oxidative destruction of organic azo dyes in wastewater. Russ. J. Appl. Chem. 2013, 86, 1741–1745. [Google Scholar] [CrossRef]
- Ilunga, A.K.; Meijboom, R. Catalytic oxidation of methylene blue by dendrimer encapsulated silver and gold nanoparticles. J. Mol. Catal. A Chem. 2015, 411, 48–60. [Google Scholar] [CrossRef]
- Ncube, P.; Bingwa, N.; Baloyi, H.; Meijboom, R. Catalytic activity of palladium and gold dendrimer-encapsulated nanoparticles For methylene blue reduction: A kinetic analysis. Appl. Catal. A Gen. 2015, 495, 63–71. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Meijboom, R. Kinetic analysis of catalytic oxidation of methylene blue over γ-Al2O3 supported copper nanoparticles. Appl. Catal. A Gen. 2015, 506, 33–43. [Google Scholar] [CrossRef]
- Naskar, S.; Pillay, S.A.; Chanda, M. Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J. Photochem. Photobiol. A Chem. 1998, 113, 257–264. [Google Scholar] [CrossRef]
- Salem, I.A.; El-maazawi, M.S. Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 2000, 41, 1173–1180. [Google Scholar] [CrossRef]
- Salem, I.A.; El-ghamry, H.A.; El-ghobashy, M.A. Catalytic decolorization of acid blue 29 dye by H2O2 and a heterogenous catalyst. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 186–192. [Google Scholar] [CrossRef]
- Xaba, M.S.; Noh, J.; Meijboom, R. Catalytic activity of different sizes of Ptn/Co3O4 in the oxidative degradation of Methylene Blue with H2O2. Appl. Surf. Sci. 2018, 467, 868–880. [Google Scholar]
- Amini, M.; Khaksar, M.; Ellern, A.; Woo, L.K. A new nanocluster polyoxomolybdate [Mo36O110(NO)4(H2O)14]∙52H2O: Synthesis, characterization and application in oxidative degradation of common organic dyes. Chin. J. Chem. Eng. 2017, 26, 337–342. [Google Scholar] [CrossRef]
- Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T. Fabrication of microtubular reactors coated with thin catalytic layer (M=Pd, Pd−Cu, Pt, Rh, Au). Catal. Commun. 2010, 11, 1160–1164. [Google Scholar] [CrossRef]
- Javaid, R.; Yaqub, U.; Kawasaki, S. Highly efficient decomposition of remazol brilliant blue R using tubular reactor coated with thin layer of PdO. J. Environ. Manag. 2016, 180, 551–556. [Google Scholar] [CrossRef]
- Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Chemistry in microreactors; chemistry in microstructured reactors. Angew. Chem. Int. Ed. 2004, 43, 406–446. [Google Scholar] [CrossRef]
- Kiwi-minsker, L.; Renken, A. Microstructured reactors for catalytic reactions. Catal. Today 2005, 110, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 2004, 304, 1305–1308. [Google Scholar] [CrossRef]
- Kobayashi, J.; Mori, Y.; Kobayashi, S. Triphase hydrogenation reactions utilizing palladium-immobilized capillary column reactors and a demonstration of suitability for large scale synthesis. Communication 2005, 347, 1889–1892. [Google Scholar] [CrossRef]
- Daskalaki, V.M.; Timotheatou, E.S.; Katsaounis, A.; Kalderis, D. Degradation of reactive red 120 using hydrogen peroxide in subcritical water. Desalination 2011, 274, 200–205. [Google Scholar] [CrossRef]
- Daneshvar, S.; Salak, F.; Yoshida, H. Decomposition and decoloration of synthetic dyes using hot/liquid (subcritical) water. Water Res. 2010, 44, 1900–1908. [Google Scholar]
- Akgu, M. Removal of C. I. basic blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor. J. Ind. Eng. Chem. 2009, 15, 803–808. [Google Scholar]
- Sogut, O.O.; Akgun, M. Treatment of dyehouse waste-water by supercritical water oxidation: A case study. J. Chem. Technol. Biotechnol. 2010, 85, 640–647. [Google Scholar] [CrossRef]
- Javaid, R.; Kawasaki, S.; Ookawara, R.; Sato, K.; Nishioka, M.; Suzuki, A.; Suzuki, T.M. Continuous dehydrogenation of aqueous formic acid under sub-critical conditions by use of hollow tubular reactor coated with thin palladium oxide layer. J. Chem. Eng. Jpn. 2013, 46, 751–758. [Google Scholar] [CrossRef]
- Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T. Sonogashira C–C coupling reaction in water using tubular reactors with catalytic metal inner surface. Chem. Eng. J. 2011, 167, 431–435. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y.; Kawasaki, S. Efficient and continuous decomposition of hydrogen peroxide using a silica capillary coated with a thin palladium or platinum Layer. Bull. Chem. Soc. Jpn. 2015, 88, 976–980. [Google Scholar] [CrossRef]
- Javaid, R.; Kawasaki, S.; Suzuki, A.; Suzuki, T.M. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J. Org. Chem. 2013, 9, 1156–1163. [Google Scholar] [CrossRef]
- Javaid, R.; Tanaka, D.A.P.; Kawanami, H.; Suzuki, T.M. Silica capillary with thin metal (Pd and Pt) inner wall: Application to continuous decomposition of hydrogen peroxide. Chem. Lett. 2009, 38, 146–147. [Google Scholar] [CrossRef]
- Akg, M.; Onur, O. Treatment of textile wastewater by SCWO in a tube reactor. J. Supercrit. Fluids 2007, 43, 106–111. [Google Scholar]
- Bhargava, S.K.; Tardio, J.; Prasad, J.; Fo, K.; Akolekar, D.B.; Grocott, S.C. Wet oxidation and catalytic wet oxidation. Ind. Eng. Chem. Res. 2006, 45, 1221–1258. [Google Scholar] [CrossRef]
- Voloshin, Y.; Manganaro, J.; Lawal, A. Kinetics and mechanism of decomposition of hydrogen peroxide over Pd/SiO2 catalyst. Ind. Eng. Chem. Res. 2008, 47, 8119–8125. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Samanta, C.; Choudhary, T.V. Factors influencing decomposition of H2O2 over supported Pd catalyst in aqueous medium. J. Mol. Catal. A Chem. 2006, 260, 115–120. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, G.; Liu, M.; Wang, Q.; Dong, S.; Wang, P. Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation. Sci. Total Environ. 2019, 647, 352–361. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, G.; Liu, M.; Wang, Q.; Wang, P. Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology. Chemosphere 2018, 212, 152–161. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Guerra-Rodr, S.; Rodriguez, E.; Singh, D.N.; Chueca, J.R. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water 2018, 10, 1828. [Google Scholar] [CrossRef]
- Du, Y.; Ma, W.; Liu, P.; Zou, B.; Ma, J. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J. Hazard. Mater. 2016, 308, 58–66. [Google Scholar] [CrossRef]
- Oh, W.; Dong, Z.; Lim, T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Fu, D.; Deng, J.; Deng, L. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep. Purif. Technol. 2016, 175, 47–57. [Google Scholar] [CrossRef]
- Wang, H.; Lan, P. Enhancing the natural history awareness of lumbar disc displacement and facilitating rehabilitation following surgery. Spine J. 2018, 18, 2374–2375. [Google Scholar] [CrossRef] [PubMed]
- Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar]
- Wang, Z.; Yuan, R.; Guo, Y.; Xu, L.; Liu, J. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. J. Hazard. Mater. 2011, 190, 1083–1087. [Google Scholar] [CrossRef]
- Taylor, P.; Shi, P. Supported Co3O4 on expanded graphite as a catalyst for the degradation of Orange II in water using sulfate radicals. Des. Water Treat. 2013, 52, 37–41. [Google Scholar]
- Oh, W.; Chang, V.W.C.; Hu, Z.; Goei, R.; Lim, T. Enhancing the catalytic activity of gC3N4 through Me doping (Me=Cu, Co and Fe) for selective sulfathiazole degradation via redox based advanced oxidation process. Chem. Eng. J. 2017, 323, 260–269. [Google Scholar] [CrossRef]
- Deng, L.; Shi, Z.; Zou, Z.; Zhou, S. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of orange G. Environ. Sci. Pollut. Res. 2017, 24, 11536–11548. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, J.; Wu, D.; Zhou, Z.; Deng, Y.; Zhang, T.; Shih, K. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem. Eng. J. 2015, 280, 514–524. [Google Scholar] [CrossRef]
- Guo, T.; Wang, K.; Zhang, G.; Wu, X. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl. Surf. Sci. 2018, 469, 331–339. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Zhang, Y.; Zhang, L. Novel low-cost Fenton-like layered Fe-titanate catalyst: Preparation, characterization and application for degradation of organic colorants. J. Colloid Interface Sci. 2014, 422, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tian, S.; Ning, P. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643–649. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K.Ã. Destruction of cresols by Fenton oxidation process. Water Res. 2005, 39, 3062–3072. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Li, X.; Li, H. Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 processes. Sep. Purif. Technol. 2009, 68, 261–266. [Google Scholar] [CrossRef]
- Daud, N.K.; Ahmad, M.A.; Hameed, B.H. Decolorization of Acid Red 1 dye solution by Fenton-like process using Fe–Montmorillonite K10 catalyst. Chem. Eng. J. 2010, 165, 111–116. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Zhang, J.; Deng, L. Efficient decolorization of dye pollutants with LiFe (WO4)2 as a reusable heterogeneous Fenton-like catalyst. Desalination 2011, 269, 284–290. [Google Scholar] [CrossRef]
- Zhao, W.G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and .OH generation in solar photo–electro–Fenton process. Appl. Catal. B Environ. 2016, 203, 127–137. [Google Scholar] [CrossRef]
- Shi, X.; Tian, A.; You, J.; Yang, H.; Wang, Y.; Xue, X. Degradation of organic dyes by a new heterogeneous Fenton reagent-Fe2GeS4 nanoparticle. J. Hazard. Mater. 2018, 353, 182–189. [Google Scholar] [CrossRef]
- Salazar, L.M.; Grisales, C.M.; Garcia, D.P. How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH. Environ. Sci. Pollut. Res. 2019, 26, 4367–4380. [Google Scholar] [CrossRef]
- Zazo, J.A.; Pliego, G.; Blasco, S.; Casas, J.A.; Rodriguez, J.J. Intensification of the Fenton process by increasing the temperature. Ind. Eng. Chem. Res. 2011, 50, 866–870. [Google Scholar] [CrossRef]
- Palaniandy, P.; Aziz, H.A.; Feroz, S. A review on the Fenton process for wastewater treatment. J. Innov. Eng. 2015, 3, 4–26. [Google Scholar]
- Ertugay, N.; Acar, F.N. Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arab. J. Chem. 2013, 10, S1158–S1163. [Google Scholar] [CrossRef]
- Kushwaha, R.; Garg, S.; Bajpai, S.; Giri, A.S. Degradation of Nile blue sulphate dye onto iron oxide nanoparticles: Kinetic study, identification of reaction intermediates, and proposed mechanistic pathways. Asia-Pac. J. Chem. Eng. 2018, 13, e2200. [Google Scholar] [CrossRef]
- Huang, R.; Fang, Z.; Yan, X.; Cheng, W. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem. Eng. J. 2012, 197, 242–249. [Google Scholar] [CrossRef]
- Tian, S.H.; Tu, Y.T.; Chen, D.S.; Chen, X.; Xiong, Y. Degradation of acid orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem. Eng. J. 2011, 169, 31–37. [Google Scholar] [CrossRef]
- Dulman, V.; Cucu-man, S.M.; Iulian, R.; Buhaceanu, R. A new heterogeneous catalytic system for decolorization and mineralization of orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes Pigments 2012, 95, 79–88. [Google Scholar] [CrossRef]
- Hassan, H.; Pauh, P.; Pinang, P. Decolorization of acid red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst. In International Conference on Environment Science and Engineering; IACSIT Press: Singapore, 2011; Volume 8, pp. 232–236. [Google Scholar]
- Blaney, L.; Lawler, D.F.; Katz, L.E. Transformation kinetics of cyclophosphamide and ifosfamide by ozone and hydroxyl radicals using continuous oxidant addition reactors. J. Hazard. Mater. 2018, 364, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Salem, I.A.; El-ghamry, H.A.; Ghobashy, M.A.E. Application of montmorillonite–Cu(II)ethylenediamine catalyst for the decolorization of Chromotrope 2R with H2O2 in aqueous solution. Spectrochim. Acta. A 2015, 139, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, S.; Aziz, H.A.; Isa, M.H.; Bashir, M.J.K.; Mohajeri, L.; Adlan, M.N. Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2010, 45, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 2011, 281, 438–445. [Google Scholar] [CrossRef]
Dye Pollutant | Application | Hazardous Effect | References |
---|---|---|---|
Aniline Yellow or 4-phenylazoaniline | Chemical industry, printer’s ink, intermediate for dye synthesis | Induces liver and epidermal tumors, high hepato-carinogenicity to male mouse | [43,44] |
Benzamine (BZ)-based azo dye | Chemical industry | Carcinogenic effect on human urinary bladder and reported tumorigenic effect on laboratory animals | [45] |
o-Aminoazotoluene (C.I. Solvent Yellow 3) | Food and chemical industry | Tumors in urinary bladder, gall bladder, lung, and live | [46] |
Methyl Yellow (Butter Yellow) and derivatives | Chemical, food and textile industry | Highly toxic cancer-causing agent | [47] |
Reactive Brilliant Red | Textile, paint industry | Inhibit function of human serum albumin, may react to body protein or enzyme | [48] |
Sudan azo dye (1-phenylazo-2-naphthol) | Petrochemical, textile and food industry | Carcinogenic in nature | [49] |
Benzidine and its congener | Chemical industry | Carcinogenic to human urinary bladder, pancreas, liver, gallbladder, bile duct, lung, large intestine, stomach and renal cell | [50] |
Direct Blue 15 (dimethoxybenzidine-based dye) | Biological and staining applications | Poisonous effect and mutagenicity in reduction process, carcinogenic | [42,51] |
p-phenylenediamine (p-PDA) | Hair dye, personal care | Possibility of bladder cancer and skin allergy | [52] |
p-Nitroaniline | Dyes intermediate, antioxidants, pharmaceuticals, corrosion inhibitor, petrochemical | Mutagenic, human carcinogen and induces tumors | [53] |
Acid Violet 7 | Food, paint, paper, cosmetic, and especially in textile industries | Chromosomal aberration, acetylcholinesterase activity inhibition, membrane lipid peroxidation | [54] |
o-Toluidine (2-methylaniline) | Intermediate for dye, rubber, and pharmaceuticals | Urinary bladder cancer | [55] |
2, 4-Diaminotoluene | Dye industry | Induces tumor in rats and mice, potential human carcinogenic effect | [56] |
Malachite Green | Dye stuff in silk, leather, paper and antimicrobial in aquaculture | Carcinogenic, mutagenic, chromosomal fractures, respiratory toxicity | [57] |
2-Nitro-p-phenylenediamine | Chemical and pharmaceutical | Reported carcinogenic for female mice | [58] |
2-Amino-4-nitrophenol | Cosmetic industry | Causes renal tubular cell hyperplasia | [59] |
4-Nitro-o-phenylenediamine | Hair dye, cosmetic industry | Carcinogen to humans | [60] |
Reactive Black 5 (sulfonated azo dye) | Color and dye industry | Restrict nitrogen use efficiency of plant, decrease the urease activity, carcinogenicity | [61,62,63] |
o-Phenylenediamine (o-PDA) | Pharmaceutical, cosmetic products and corrosion inhibitor | Genotoxic, asthma, gastritis, rise in blood pressure, vertigo, tremors, and comas | [64] |
Disperse Red 1 and Disperse Red 13 | Textile industry | Mutagenic to salmonella with possibility on human beings, affecting the activity and composition of microbial communities | [65,66,67] |
m-Phenylenediamine (m-PDA) | Dye component, additive for resin, coatings, polymers, cosmetic industry | Oxidation products are highly mutagenic | [68] |
Congo Red | Cotton dyeing, textile industry | Carcinogenic and mutagenic | [69] |
Nitro-group with monocyclic aromatic amines | Various chemical industries | Likely to be carcinogenic | [70] |
Dye Pollutant | References |
---|---|
Direct Orange 16 | [135] |
Acid Red 14 | [136] |
Basic Blue 3 | [137] |
4-Amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid | [138] |
Alizarin red | [139] |
Yellow 52 | [140] |
4-Nitrophenol | [141] |
Methyl Orange | [142] |
Orange G | [143] |
Rhodamine B | [144] |
Lissamine Green B | [145] |
Azure B | [145] |
Reactive Black 5 | [146] |
Reactive Red 120 | [147] |
Orange II | [148] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public Health 2019, 16, 2066. https://doi.org/10.3390/ijerph16112066
Javaid R, Qazi UY. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. International Journal of Environmental Research and Public Health. 2019; 16(11):2066. https://doi.org/10.3390/ijerph16112066
Chicago/Turabian StyleJavaid, Rahat, and Umair Yaqub Qazi. 2019. "Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview" International Journal of Environmental Research and Public Health 16, no. 11: 2066. https://doi.org/10.3390/ijerph16112066
APA StyleJavaid, R., & Qazi, U. Y. (2019). Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. International Journal of Environmental Research and Public Health, 16(11), 2066. https://doi.org/10.3390/ijerph16112066