Bio-Optimization of Chemical Parameters and Earthworm Biomass for Efficient Vermicomposting of Different Palm Oil Mill Waste Mixtures
Abstract
:1. Introduction
Treatment Technologies of POME and Their Effects to the Environment
2. Materials and Methods
2.1. Materials
2.2. Experimental Set-Up
2.3. Statistical Analysis and Modelling
3. Results and Discussion
3.1. Effects of pH, C:N Ratio and Earthworm Biomass during the Vermicomposting Process
3.2. Mathematical Modelling of POME-PPF with Respect to pH, C:N Ratio and Earthworms
- R2 = 0.914; where
- = pH values; = Time (days); = POME (%);
- a = 4.038; b = 1.87; c = 4.24; d = −0.32; e = −4.72; f = −0.59;
- g = −0.00047; h = 1.49; i = 0.00067; j = −0.00085.
- R2 = 0.9785; where
- = C:N; = Time (days); = POME (%);
- a = 50.22; b = −1.066; c = 0.0145; d = −0.00056; e = −0.636; f = 0.032;
- g = −0.00098; h = 1.24; i = −5.56.
- R2 = 0.8123; where
- = earthworm growth (g); = Time (days); = POME (%);
- a = 8966.44; b = 0.027; c = 2.95; d = −6.58; e = 1.621; f = −0.296;
- g = 0.0227; h = −8967.75; wy = −2294.70.
3.3. Optimization of Vermicompost
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdul-Manan, A.F.; Baharuddin, A.; Chang, L.W. A detailed survey of the palm and biodiesel industry landscape in Malaysia. Energy 2014, 76, 931–941. [Google Scholar] [CrossRef]
- MPOB. Malaysian Oil Palm Statistics. Available online: http://bepi.mpob.gov.my/index.php/statistics/ export/138-export-2015/759-monthly-export-ofoil-palm products-2015.html2015 (accessed on 30 November 2015).
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Reactive water-soluble forms of nitrogen and phosphorus and their impacts on environment and human health. In Soil Components and Human Health; Springer: Berlin, Germany, 2018; pp. 223–255. [Google Scholar]
- Gaur, S. An updated review on quantitative and qualitative analysis of water pollution in west flowing Tapi River of Gujarat, India. In Environmental Pollution; Springer: Berlin, Germany, 2018; pp. 525–547. [Google Scholar]
- Kamyab, H.; Friedler, F.; Klemes, J.J.; Chelliapan, S.; Rezania, S. Bioenergy production and nutrients removal by green microalgae with cultivation from agro-wastewater palm oil mill effluent (POME)—A review. Chem. Eng. Trans. 2018, 70, 2197–2202. [Google Scholar]
- Tabassum, S.; Zhang, Y.; Zhang, Z. An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge—A pilot study. J. Clean. Prod. 2015, 95, 148–155. [Google Scholar] [CrossRef]
- Chin, M.J.; Poh, P.E.; Tey, B.T.; Chan, E.S.; Chin, K.L. Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective. Renew. Sustain. Energy Rev. 2013, 26, 717–726. [Google Scholar] [CrossRef]
- Hojjat, M.; Salleh, M.A.M. Optimization of POME Anaerobic Pond. Eur. J. Sci. Res. 2009, 32, 455–459. [Google Scholar]
- Said, M.; Ahmad, A.; Mohammad, A.W.; Nor, M.T.M.; Abdullah, S.R.S. Blocking mechanism of PES membrane during ultrafiltration of POME. J. Ind. Eng. Chem. 2015, 21, 182–188. [Google Scholar] [CrossRef]
- Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Gan, S.; Ng, H.K.; Lee, L.Y.; Adhikari, S. Kinetics and mechanisms for copyrolysis of palm empty fruit bunch fiber (EFBF) with palm oil mill effluent (POME) sludge. Energy Fuels 2017, 31, 8217–8227. [Google Scholar] [CrossRef]
- Yuan, H.; He, Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. Biores. Technol. 2015, 195, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.; Yao, D.; Gao, N.; Bond, T.; Templeton, M.R. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment. Chemosphere 2015, 141, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Baharuddin, A.S.; Rahman, N.A.A.; Shan, U.K.; Hassan, M.A.; Wakisaka, M.; Shirai, Y. Evaluation of pressed shredded empty fruit bunch (EFB)-palm oil mill effluent (POME) anaerobic sludge based compost using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analysis. Afr. J. Biotechnol. 2011, 10, 8082–8289. [Google Scholar]
- Rupani, P.F.; Singh, R.P.; Ibrahim, M.H.; Esa, N. Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl. Sci. J. 2010, 10, 1190–1201. [Google Scholar]
- Hayawin, Z.N.; Astimar, A.A.; Rashyeda, R.N.; Faizah, J.; Idris, J.; Ravi, N. Influence of frond, stem and roots of oil palm seedlings in vermicompost from oil palm biomass. J. Oil Palm Res. 2016, 28, 479–484. [Google Scholar] [CrossRef]
- Rupani, P.F.; Embrandiri, A.; Ibrahim, M.H.; Shahadat, M.; Hansen, S.B.; Mansor, N.N.A. Bioremediation of palm industry wastes using vermicomposting technology: Its environmental application as green fertilizer. 3 Biotech 2017, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Benner, R.; Pakulski, J.D.; McCarthy, M.; Hedges, J.I.; Hatcher, P.G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 1992, 255, 1561–1564. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.; Teng, T.T.; Alkarkhi, A.F.; Ismail, N. Nickel ion coupled counter complexation and decomplexation through a modified supported liquid membrane system. RSC Adv. 2015, 5, 38424–38434. [Google Scholar] [CrossRef]
- Khan, A.A. Vermicomposting of Poultry Litter Using Eisenia Foetida. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2006. [Google Scholar]
- Komilis, D.; Evangelou, A.; Voudrias, E. Monitoring and optimizing the co-composting of dewatered sludge: A mixture experimental design approach. J. Environ. Manag. 2011, 92, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Proietti, P.; Calisti, R.; Gigliotti, G.; Nasini, L.; Regni, L.; Marchini, A. Composting optimization: Integrating cost analysis with the physical-chemical properties of materials to be composted. J. Clean. Prod. 2016, 137, 1086–1099. [Google Scholar] [CrossRef]
- Rupani, P.F.; Embrandiri, A.; Ibrahim, M.H.; Shahadat, M.; Hansen, S.B.; Ismail, S.A.; Kadir, M.O.A. Recycling of palm oil industrial wastes using vermicomposting technology: Its kinetics study and environmental application. Environ. Sci. Pollut. Res. 2017, 24, 12982–12990. [Google Scholar] [CrossRef]
- Patil, J.H.; Sanil, P.H.; Malini, B.M.; Manoj, V.; Deepika, D.; Chaitra, D. Vermicomposting of water hyacinth with poultry litter using rotary drum reactor. J. Chem. Pharm. Res. 2012, 5, 2585–2589. [Google Scholar]
- Garg, V.; Gupta, R. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicol. Environ. Saf. 2011, 74, 19–24. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V. Vermicomposting-an effective tool for the management of invasive weed Parthenium hysterophorus. Biores. Technol. 2011, 102, 5891–5895. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Rodríguez, E.; Vazquez, M.; Diaz-Raviña, M. Dynamics of physicochemical and biological parameters during the co-composting of chestnut burr/leaf litter with solid poultry manure. J. Sci. Food Agric. 2001, 81, 648–652. [Google Scholar] [CrossRef]
- Satisha, G.; Devarajan, L. Effect of amendments on windrow composting of sugar industry pressmud. Waste Manag. 2007, 27, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.K.; Suthar, S.; Yadav, A. Management of food industry waste employing vermicomposting technology. Biores. Technol. 2012, 126, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.A. Vermicomposting: The Biology of Earthworms; Orient Longman Imited: Chennai, India, 1997. [Google Scholar]
- Singh, D.; Suthar, S. Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Biores. Technol. 2012, 112, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Singh, S. Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. 2008, 5, 99–106. [Google Scholar] [CrossRef]
- Rupani, P.F.; Ibrahim, M.H.; Ismail, S.A. Vermicomposting biotechnology: Recycling of palm oil mill wastes into valuable products. Int. J. Recycl. Org. Waste Agric. 2013, 2, 10. [Google Scholar] [CrossRef]
S.O.V. | S.S. | d.f. | M.S. | F | p-Value |
---|---|---|---|---|---|
(pH) | |||||
Model | 24.33 | 39 | 0.62 | 4.47 | <0.0001 |
A-Day | 16.03 | 3 | 5.34 | 39.11 | <0.0001 |
B-Mixture | 5.78 | 9 | 0.64 | 4.70 | <0.0001 |
AB | 2.51 | 27 | 0.093 | 0.68 | 0.8685 |
Pure Error | 10.93 | 80 | 0.14 | ||
Total | 35.26 | 119 | |||
(C:N) | |||||
Model | 11,421.86 | 39 | 292.87 | 216.82 | <0.0001 |
A-Day | 3516.43 | 3 | 1172.14 | 867.78 | <0.0001 |
B-Mixture | 7808.85 | 9 | 867.65 | 642.35 | <0.0001 |
AB | 96.57 | 27 | 3.58 | 2.65 | 0.0004 |
Pure Error | 108.06 | 80 | 1.35 | ||
Total | 11,529.92 | 119 | |||
(EW) | |||||
Model | 2.78 | 39 | 0.071 | 42.76 | <0.0001 |
A-Day | 2.22 | 3 | 0.74 | 444.54 | <0.0001 |
B-Mixture | 0.29 | 9 | 0.032 | 19.19 | <0.0001 |
AB | 0.27 | 27 | 0.009947 | 5.98 | <0.0001 |
Pure Error | 0.13 | 80 | 0.001668 | ||
Total | 2.92 | 119 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupani, P.F.; Alkarkhi, A.F.M.; Shahadat, M.; Embrandiri, A.; EL-Mesery, H.S.; Wang, H.; Shao, W. Bio-Optimization of Chemical Parameters and Earthworm Biomass for Efficient Vermicomposting of Different Palm Oil Mill Waste Mixtures. Int. J. Environ. Res. Public Health 2019, 16, 2092. https://doi.org/10.3390/ijerph16122092
Rupani PF, Alkarkhi AFM, Shahadat M, Embrandiri A, EL-Mesery HS, Wang H, Shao W. Bio-Optimization of Chemical Parameters and Earthworm Biomass for Efficient Vermicomposting of Different Palm Oil Mill Waste Mixtures. International Journal of Environmental Research and Public Health. 2019; 16(12):2092. https://doi.org/10.3390/ijerph16122092
Chicago/Turabian StyleRupani, Parveen Fatemeh, Abbas F. M. Alkarkhi, Mohammad Shahadat, Asha Embrandiri, Hany S. EL-Mesery, Hongcheng Wang, and Weilan Shao. 2019. "Bio-Optimization of Chemical Parameters and Earthworm Biomass for Efficient Vermicomposting of Different Palm Oil Mill Waste Mixtures" International Journal of Environmental Research and Public Health 16, no. 12: 2092. https://doi.org/10.3390/ijerph16122092
APA StyleRupani, P. F., Alkarkhi, A. F. M., Shahadat, M., Embrandiri, A., EL-Mesery, H. S., Wang, H., & Shao, W. (2019). Bio-Optimization of Chemical Parameters and Earthworm Biomass for Efficient Vermicomposting of Different Palm Oil Mill Waste Mixtures. International Journal of Environmental Research and Public Health, 16(12), 2092. https://doi.org/10.3390/ijerph16122092