Dissipation Behavior of Three Fungicides during the Industrial Processing of Paeoniae Radix Alba and Associated Processing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. In-vitro Sample Preparation
2.3. Extraction and Clean-Up
2.4. UPLC-MS/MS Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Effects of Chinese Medicine Processing on Pesticide Residues
3.2.1. Effects of Boiling
3.2.2. Effects of Cooling
3.2.3. Effects of Peeling
3.2.4. Effects of Soaking and Moistening
3.2.5. Effects of Drying
3.3. Processing Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Y.P.; Woerdenbag, H.J. Traditional Chinese herbal medicine. Pharm. World Sci. 1995, 17, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, V.; Basak, B.B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
- Leung, K.S.Y.; Chan, K.; Chan, C.L.; Lu, G.H. Systematic evaluation of organochlorine pesticide residues in Chinese materia medica. Phytother. Res. 2010, 19, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Hao, L.L.; Peng, F. Residues of 18 organochlorine pesticides in 30 traditional Chinese medicines. Chemosphere 2008, 71, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Sara, S.G.; Eva, P.J.; Eliseo, H.H.; Alba, A.M.; Maria, J.S.M.; Sonia, R.C. Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. International J. Environ. Anal. Chem. 2013, 93, 1585–1601. [Google Scholar]
- Zhao, Z.Z.; Liang, Z.T.; Chan, K.; Lu, G.H.; Lee, E.L.M.; Chen, H.B.; Li, L. A unique issue in the standardization of Chinese materia medica: Processing. Planta Med. 2010, 76, 1975–1986. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation—A review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Shakoori, A.; Yazdanpanaha, H.; Kobarfarda, F. The Effects of House Cooking Process on Residue Concentrations of 41 Multi-Class Pesticides in Rice. Iran. J. Pharm. Res. 2018, 571–584. [Google Scholar]
- Xiao, J.J.; Duan, J.S.; Wu, Y.C.; Shi, Y.H.; Fang, Q.K.; Liao, M.; Hua, R.M.; Cao, H.Q. Dissipation and Migration of Pyrethroids in Auricularia polytricha Mont. from Cultivation to Postharvest Processing and Dietary Risk. Molecules 2018, 23, 791. [Google Scholar] [CrossRef]
- Pazzirota, T.; Martin, L.; Mezcua, M.; Ferrer, C.; Fernandez-Alba, A.R. Processing factor for a selected group of pesticides in a wine-making process: Distribution of pesticides during grape processing. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1752–1760. [Google Scholar] [CrossRef]
- Timme, G.; Walz-Tylla, B. Effects of Food Preparation and Processing on Pesticide Residues in Commodities of Plant Origin. Pesticide Residues in Food and Drinking Water: Human Exposure and Risks; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2004; pp. 121–148. [Google Scholar]
- Li, X.R.; Wang, W.Y.; Su, Y.; Yue, Z.Y.; Bao, J.S. Inhibitory effect of an aqueous extract of Radix Paeoniae Alba on calcium oxalate nephrolithiasis in a rat model. Ren. Fail. 2017, 39, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, R.X.; Guo, H.Z.; Zhu, Z.N.; Bi, K.S.; Guo, B.A. Study on influence of processing methods on chemical constituents in Radix Paeoniae Alba. China J. Chin. Mater. Med. 2006, 31, 1418. [Google Scholar]
- Aguilera-Luiz, M.M.; Vidal, J.L.M.; Romero-González, R.; Frenich, A.G. Multi-residue determination of veterinary drugs in milk by ultra-high-pressure liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008, 1205, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Liu, Y.Y.; Jiao, B.N. Dissipation behavior of five organophosphorus pesticides in kumquat sample during honeyed kumquat candied fruit processing. Food Control 2016, 66, 87–92. [Google Scholar] [CrossRef]
- Ghosh, M.N.; Sharma, D. Power of Tukey’s Test for Non-Additivity. J. R. Stat. Soc. 1963, 25, 213–219. [Google Scholar] [CrossRef]
- Rome, F.A.O.; World Health Organization Geneva; AGP. Updating the Principles and Methods of Risk Assessment: MRLs for Pesticides and Veterinary Drugs. Available online: http://www.fao.org/3/al932e/al932e.pdf (accessed on 1 March 2006).
- Camara, M.A.; Barba, A.; Cermeño, S.; Martinez, G.; Oliva, J. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: Bioavailability and dietary risk. J. Env. Sci Health B 2017, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, C.; Peng, J.; Zhang, Z.; Sun, X.; Xiao, H.; Sun, K.; Pan, L.; Liu, X.; Tu, K. Residual Behaviors of Six Pesticides in Shiitake from Cultivation to Postharvest Drying Process and Risk Assessment. J. Agric. Food Chem. 2016, 64. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef]
- Shi, K.W.; Wu, X.; Ma, J.; Zhang, J.; Zhou, L.; Wang, H.; Li, L. Effects of Planting and Processing Modes on the Degradation of Dithianon and Pyraclostrobin in Chinese Yam (Dioscorea spp.). J. Agric. Food Chem. 2017, 10439–10444. [Google Scholar] [CrossRef]
- Han, Y.T.; Liu, S.W.; Yang, J.; Zhong, Z.Z.; Zou, N.; Song, L.; Zhang, X.S.; Li, X.S.; Pan, C.P. Residue behavior and processing factors of eight pesticides during the production of sorghum distilled spirits. Food Control 2016, 69, 250–255. [Google Scholar] [CrossRef]
- Xiao, X.M.; Yu, S.; Li, R.; Fan, J.; Chen, S.H.; Shen, H.T.; Han, J.L.; Huang, B.F.; Ren, Y.P. Distribution and migration study of pesticides between peel and pulp in grape by online gel permeation chromatography–gas chromatography/mass spectrometry. Food Chem. 2012, 135, 161–169. [Google Scholar]
Time (min) | Flow Rate (mL/min) | A % a | B % b |
---|---|---|---|
0 | 0.4 | 90 | 10 |
0.25 | 0.4 | 90 | 10 |
7.00 | 0.4 | 0 | 100 |
8.50 | 0.4 | 0 | 100 |
8.51 | 0.4 | 0 | 100 |
10.00 | 0.4 | 90 | 10 |
Compound | Precursor Ion (m/z) a | Product Ions (m/z) | Dwell Time (s) | Cone (v) | Collision (v) |
---|---|---|---|---|---|
Azoxystrobin | 404.10 | 372.05* b | 0.008 | 17 | 14 |
329.00 | 31 | ||||
Epoxiconazole | 330.05 | 141.10 | 0.008 | 25 | 21 |
121.10* | 18 | ||||
Difenoconazole | 406.10 | 251.00* | 0.01 | 37 | 25 |
337.05 | 17 |
Matrixes | Pesticides | Linearity-Correlation Coefficient | Limit of Detection (LOD) (μg/kg) | Limit of Quantification (LOQ) (μg/kg) | Recovery ± RSD (%) (n = 5) | ||
---|---|---|---|---|---|---|---|
Level I | Level II | Level III | |||||
(5.00 μg/kg) | (50.00 μg/kg) | (200 μg/kg) | |||||
Raw PRA. | Azoxystrobin | 0.9977 | 0.33 | 1.05 | 79.50 ± 3.42 | 102.59 ± 3.44 | 118.23 ± 3.27 |
Difenoconazole | 0.9986 | 0.09 | 0.29 | 106.52 ± 3.72 | 91.90 ± 7.34 | 93.60 ± 5.76 | |
Epoxiconazole | 0.9987 | 0.71 | 2.41 | 109.30 ± 7.21 | 105.80 ± 4.56 | 92.37 ± 4.28 | |
Peels | Azoxystrobin | 0.9989 | 1.12 | 3.51 | 97.50 ± 3.05 | 87.70 ± 8.17 | 84.69 ± 5.50 |
Difenoconazole | 0.9987 | 0.13 | 0.37 | 84.73 ± 2.94 | 84.30 ± 4.39 | 95.14 ± 4.75 | |
Epoxiconazole | 0.9974 | 1.4 | 4.08 | 95.33 ± 7.59 | 109.15 ± 6.37 | 75.39 ± 4.66 | |
Water | Azoxystrobin | 0.9997 | 0.5 | 1.83 | 78.00 ± 6.91 | 78.40 ± 1.36 | 76.60 ± 1.24 |
Difenoconazole | 0.9965 | 0.06 | 0.18 | 118.20 ± 2.45 | 79.50 ± 6.17 | 74.20 ± 9.70 | |
Epoxiconazole | 0.9991 | 0.92 | 2.93 | 99.15 ± 3.14 | 109.78 ± 6.34 | 112.16 ± 7.84 |
Process | Azoxystrobin | Difenoconazole | Epoxiconazole | |||
---|---|---|---|---|---|---|
2× | 5× | 2× | 5× | 2× | 5× | |
Boiling | 0.17 | 0.11 | 0.37 | 0.30 | 0.24 | 0.14 |
Cooling | 0.85 | 0.94 | 0.82 | 0.96 | 0.90 | 0.89 |
Peeling | 0.45 | 0.70 | 0.31 | 0.64 | 0.34 | 0.71 |
First drying | 0.45 | 0.43 | 0.33 | 0.37 | 0.17 | 0.06 |
Soaking and moistening | 0.58 | 0.70 | 0.63 | 0.84 | <LOQ | <LOQ |
Second drying | 0.40 | 0.43 | 0.32 | 0.48 | <LOQ | <LOQ |
Overall process | 0.006 | 0.009 | 0.006 | 0.027 | <LOQ | <LOQ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-N.; Sun, M.-N.; Wang, F.; Xu, X.; Zhang, X.-H.; Ma, J.-J.; Xiao, J.-J.; Liao, M.; Cao, H.-Q. Dissipation Behavior of Three Fungicides during the Industrial Processing of Paeoniae Radix Alba and Associated Processing Factors. Int. J. Environ. Res. Public Health 2019, 16, 2196. https://doi.org/10.3390/ijerph16122196
Li S-N, Sun M-N, Wang F, Xu X, Zhang X-H, Ma J-J, Xiao J-J, Liao M, Cao H-Q. Dissipation Behavior of Three Fungicides during the Industrial Processing of Paeoniae Radix Alba and Associated Processing Factors. International Journal of Environmental Research and Public Health. 2019; 16(12):2196. https://doi.org/10.3390/ijerph16122196
Chicago/Turabian StyleLi, Sheng-Nan, Ming-Na Sun, Fan Wang, Xing Xu, Xin-Hong Zhang, Jin-Juan Ma, Jin-Jing Xiao, Min Liao, and Hai-Qun Cao. 2019. "Dissipation Behavior of Three Fungicides during the Industrial Processing of Paeoniae Radix Alba and Associated Processing Factors" International Journal of Environmental Research and Public Health 16, no. 12: 2196. https://doi.org/10.3390/ijerph16122196
APA StyleLi, S. -N., Sun, M. -N., Wang, F., Xu, X., Zhang, X. -H., Ma, J. -J., Xiao, J. -J., Liao, M., & Cao, H. -Q. (2019). Dissipation Behavior of Three Fungicides during the Industrial Processing of Paeoniae Radix Alba and Associated Processing Factors. International Journal of Environmental Research and Public Health, 16(12), 2196. https://doi.org/10.3390/ijerph16122196