Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit®
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. CrossFit® Training Intervention
2.3. Rating of Perceived Exertion (RPE)
2.4. Blood Samples and Analysis
2.5. Statistical Analysis
3. Results
3.1. Subjects
3.2. Testosterone
3.3. Cortisol
3.4. Testosterone/Cortisol Ratio (TC)
3.5. CD4 and CD8 T Lymphocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Glassman, G. Guia de Treinamento Nível 1; CrossFit, Inc.: Colombia, DC, USA, 2018. [Google Scholar]
- Weisenthal, B.M.; Beck, C.A.; Maloney, M.D.; DeHaven, K.E.; Giordano, B.D. Injury Rate and Patterns Among CrossFit Athletes. Orthop. J. Sports Med. 2014, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fernandez, J.; Sabido-Solana, R.; Moya, D.; Sarabia, J.M.; Moya, M. Acute Physiological Responses during CrossFit® Workouts. Eur. J. Hum. Mov. 2015, 35, 1–25. [Google Scholar]
- Tibana, R.A.; Sousa, N.M.F.; Cunha, G.V.; Prestes, J.; Navalta, J.W.; Voltarelli, F.A. Exertional Rhabdomyolysis after an Extreme Conditioning Competition: A Case Report. Sports 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Cadegiani, F.A.; Kater, C.E.; Gazola, M. Clinical and biochemical characteristics of high-intensity functional training (HIFT) and overtraining syndrome: Findings from the EROS study (The EROS-HIFT). J. Sports Sci. 2019, 37, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M.V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PLoS ONE 2017, 12, e0181855. [Google Scholar] [CrossRef] [PubMed]
- Kliszczewicz, B.M.; Quindry, J.C.; Blessing, D.L.; Gretchen, O.D.; Esco, M.R.; Taylor, K.J. Acute exercise and oxidative stress: CrossFit® vs. Treadmill bout. J. Hum. Kinet. 2015, 47, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Tibana, R.A.; de Almeida, L.M.; de Sousa, N.M.F.; Nascimento, D.C.; de Sousa Neto, N.; de Almeida, J.A.; de Souza, V.C.; Lopes, M.D.F.T.; Nobrega, O.T.; Vieira, D.C. Two Consecutive Days of Crossfit Training Affects Pro and Anti-inflammatory Cytokines and Osteoprotegerin without Impairments in Muscle Power. Front. Physiol. 2016, 7, 260. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Zawieja, E.E.; Podgórski, T.; Łoniewski, I.; Zawieja, B.E.; Warzybok, M.; Jeszka, J. The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PLoS ONE 2018, 13, e0197480. [Google Scholar] [CrossRef]
- Mangine, G.T.; Van Dusseldorp, T.A.; Feito, Y.; Holmes, A.J.; Serafini, P.R.; Box, A.G.; Gonzalez, A.M. Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports 2018, 6, 62. [Google Scholar] [CrossRef]
- França, S.C.; Barros Neto, T.L.; Agresta, M.C.; Lotufo, R.F.; Kater, C.E. Divergent responses of serum testosterone and cortisol in athlete men after a marathon race. Arq. Bras. Endocrinol. Metabol. 2006, 50, 1082–1087. [Google Scholar] [CrossRef]
- Fry, A.C.; Kraemer, W.J.; Gordon, S.E.; Stone, M.H.; Warren, B.J.; Fleck, S.J.; Kearney, J.T. Endocrine responses to overreaching before and after 1 year of weightlifting. Can. J. Appl. Physiol. 1994, 19, 400–410. [Google Scholar] [CrossRef]
- Jin, C.H.; Paik, I.Y.; Kwak, Y.S.; Jee, Y.S.; Kim, J.Y. Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress. J. Exerc. Rehab. 2015, 11, 198–203. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Drake, N.B.; Smeed, J.; Carper, M.J.; Crawford, D. Effects of short-term Crossfit training: A magnitude-based approach. J. Exerc. Physiol. Online 2017, 20, 111–133. [Google Scholar]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Ratamess, N.A.; Faigenbaum, A.D.; Hoffman, J.R.; Kang, J. Self-selected resistance training intensity in healthy women: The influence of a personal trainer. J. Strength Cond. Res. 2008, 22, 103–111. [Google Scholar] [CrossRef]
- Robertson, R.J. The OMNI picture system of perceived exertion. In Perceived Exertion for Practitioners: Rating Effort with the OMNI Picture System; Robertson, R.J., Ed.; Human Kinetics: Champaign, IL, USA, 2004; pp. 9–20. [Google Scholar]
- Oliveira, C.A.M.; Rogatto, G.P.; Eliete Luciano, E. Efeitos Do Treinamento Físico De Alta Intensidade Sobre Os Leucócitos De Ratos Diabéticos. Rev. Bras. Med. Esporte 2002, 8, 219–224. [Google Scholar] [CrossRef]
- Riad-Fahmy, D.; Read, G.F.; Gaskell, S.J.; Dyas, J.; Hindawi, R. A simple, direct radioimmunoassay for plasma cortisol, featuring a 125I radioligand and a solid-phase separation technique. Clin. Chem. 1979, 25, 665–668. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New Jersey, NJ, USA, 1988. [Google Scholar]
- Elasco-Orjuela, G.P.; Domínguez-Sanchéz, M.A.; Hernández, E.; Correa-Bautista, J.E.; Triana-Reina, H.R.; García-Hermoso, A.; Peña-Ibagon, J.C.; Izquierdo, M.; Cadore, E.L.; Hackney, A.C.; et al. Acute effects of high-intensity interval, resistance or combined exercise protocols on testosterone—Cortisol responses in inactive overweight individuals. Physiol. Behav. 2018, 194, 401–409. [Google Scholar] [CrossRef]
- Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-Guided vs. Predetermined Block Training on Performance, HRV and Serum Hormones. Int. J. Sports Med. 2017, 38, 909–920. [Google Scholar] [CrossRef]
- Herbert, P.; Hayes, L.D.; Sculthorpe, N.F.; Grace, F.M. HIIT produces increases in muscle power and free testosterone in male masters athletes. Endocr. Connect. 2017, 6, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef]
- Krinski, K.; Elsangedy, H.; Colombo, H.; Buzzachera, C.F. Efeitos do exercício físico no sistema imunológico. Rev. Bras. Med. 2010, 67, 1–6. [Google Scholar]
- Campbell, J.P.; Riddell, N.E.; Burns, V.E.; Turner, M.; van Zanten, J.J.; Drayson, M.T.; Bosch, J.A. Acute exercise mobilises CD8+ T lymphocytes exhibiting an 390 effector-memory phenotype. Brain Behav. Immun. 2009, 23, 767–775. [Google Scholar] [CrossRef]
- Urner, J.E.; Wadley, A.J.; Aldred, S.; Fisher, J.P.; Bosch, J.A.; Campbell, J.P. Intensive Exercise Does Not Preferentially Mobilize Skin-Homing T Cells and NK Cells. Med. Sci. Sports Exerc. 2016, 48, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Shiu, M. Modulation of T Cell Distribution and Function by High-Intensity Interval Training. Master’s Theses, University of Toronto, Toronto, YTO, Canada, March 2016. [Google Scholar]
- Heavens, K.R.; Szivak, T.K.; Hooper, D.R.; Dunn-Lewis, C.; Comstock, B.A.; Flanagan, S.D.; Looney, D.P.; Kupchak, B.R.; Maresh, C.M.; Volek, J.S.; et al. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J. Strength Cond. Res. 2014, 28, 1041–1049. [Google Scholar] [CrossRef]
- Weiss, L.W.; Cureton, K.J.; Thompson, F.N. Comparison of serum testosterone and androstenedione responses to weight lifting in men and women. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 413–419. [Google Scholar] [CrossRef]
- Nigam, P.K.; Patra, P.K.; Khodiar, P.K.; Gual, J. A study of blood CD3+, CD4+, and CD8+ T cell levels and CD4+: CD8+ ratio in vitiligo patients. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 111. [Google Scholar] [CrossRef]
- Mackinnon, L.T.; Hooper, S.L.; Jones, S.; Gordon, R.D.; Bachmann, A.W. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med. Sci. Sports Exerc. 1997, 29, 1637–1645. [Google Scholar] [CrossRef]
- Lee, W.; Shin, K.W.; Paik, I.Y.; Jung, W.M.; Cho, S.Y.; Choi, S.T.; Kim, H.D.; Kim, J.Y. Immunological impact of Taekwondo competitions. Int. J. Sports Med. 2012, 33, 58–66. [Google Scholar] [CrossRef]
Week | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
---|---|---|---|---|---|---|---|
Week 1 | M | G + W | M + G + W | M + G | W | Rest | Rest |
Week 2 | G | M + W | M + G + W | G + W | M | Rest | Rest |
Week 3 | W | M + G | M + G + W | M + W | G | Rest | Rest |
Variables | Men | Women | p-Value |
---|---|---|---|
Age (years) | 34.7 ± 7.5 | 36.1 ± 13.6 | 0.7417 |
Height (cm) | 180.7 ± 4.8 | 166.8 ± 7.5 | 0.0000 † |
Total Body Mass (kg) | 89.2 ± 7.1 | 65.5 ± 15.7 | 0.0000 † |
Estimated Body Fat (%) | 17.6 ± 2.1 | 23.5 ± 4.8 | 0.0013 † |
Practice Time (months) | 9.4 ± 2.7 | 8.8 ± 1.9 | 0.5076 |
Variable | T0 | T2 | T4 | T6 |
---|---|---|---|---|
Total | ||||
Testosterone (pg·mL−1) | 261.7 ± 249.3 | 289.5 ± 232.6 | 298.7 ± 258.5 | 346.0 ± 299.7 * 0,2,4, a |
Cortisol (pg·mL−1) | 18.0 ± 8.2 | 18.1 ± 9.7 | 15.6 ± 6.3 * 0, c | 14.6 ± 5.6 * 0,2, d |
T/C | 18.1 ± 19.7 | 21 ± 20.3 | 23 ± 22.8 | 28.1 ± 27.2 |
Men | ||||
Testosterone (pg·mL−1) | 421.2 ± 207.6 †† | 451.4 ± 143.9 †† | 473.7 ± 189.4 | 564.7 ± 185.3 * 0,2,4, ††, b |
Cortisol (pg·mL-1) | 15.6 ± 5.2 † | 15 ± 5.4 † | 13.3 ± 4.3 * 0, †, e | 12.6 ± 3.4 * 0,2,4, †, e, f †, g |
T/C | 30.4 ± 18 | 34.6 ± 16.2 | 37.8 ± 19.2 | 47.6 ± 19.6 |
Women | ||||
Testosterone (pg·mL−1) | 35.7 ± 21.9 | 60.2 ± 99 | 50.8 ± 60 | 36.3 ± 14.1 |
Cortisol (pg·mL−1) | 22.6 ± 9.1 | 23.8 ± 11.3 | 19.6 ± 6.5 | 18.3 ± 60 |
T/C | 1.7 ± 0.9 | 2.7 ± 3.6 | 3.2 ± 4.8 | 2.1 ± 0.9 |
Variable | T0 | T2 | T4 | T6 |
---|---|---|---|---|
Total | ||||
CD4 (cells/mm3) | 1100.5 ± 307.0 | 1026.9 ± 305.6 | 1045.7 ± 275.5 | 1118.8 ± 242.2 |
CD8 (cells/mm3) | 664.9 ± 220.9 | 582.3 ± 226.4 | 623.4 ± 195.4 | 672.4 ± 196.9 * 2,4 |
CD4/CD8 | 1.66 ± 1.39 | 1.76 ± 1.35 | 1.68 ± 1.41 | 1.66 ± 1.23 |
Men | ||||
CD4 (cells/mm3) | 1108.1 ± 270.5 | 1065.8 ± 328.0 | 1053.7 ± 284.8 | 1126.2 ± 249.2 |
CD8 (cells/mm3) | 723.0 ± 231.9 | 659.4 ± 243.8 † | 673.2 ± 208.2 | 728.3 ± 208.5 * 2,4 |
CD4/CD8 | 1.53 ± 1.17 | 1.62 ± 1.35 | 1.57 ± 1.37 | 1.55 ± 1.19 |
Women | ||||
CD4 (cells/mm3) | 1089.6 ± 365.0 | 971.7 ± 275.0 | 1034.4 ± 274.0 | 1108.3 ± 242.6 |
CD8 (cells/mm3) | 582.5 ± 182.9 | 473.1 ± 147.5 | 553.0 ± 157.8 | 593.1 ± 154.0 * 2 |
CD4/CD8 | 1.87 ± 2.0 | 2.05 ± 1.86 | 1.87 ± 1.74 | 1.87 ± 1.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poderoso, R.; Cirilo-Sousa, M.; Júnior, A.; Novaes, J.; Vianna, J.; Dias, M.; Leitão, L.; Reis, V.; Neto, N.; Vilaça-Alves, J. Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit®. Int. J. Environ. Res. Public Health 2019, 16, 2577. https://doi.org/10.3390/ijerph16142577
Poderoso R, Cirilo-Sousa M, Júnior A, Novaes J, Vianna J, Dias M, Leitão L, Reis V, Neto N, Vilaça-Alves J. Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit®. International Journal of Environmental Research and Public Health. 2019; 16(14):2577. https://doi.org/10.3390/ijerph16142577
Chicago/Turabian StylePoderoso, Rodrigo, Maria Cirilo-Sousa, Adenilson Júnior, Jefferson Novaes, Jeferson Vianna, Marcelo Dias, Luis Leitão, Victor Reis, Nacipe Neto, and José Vilaça-Alves. 2019. "Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit®" International Journal of Environmental Research and Public Health 16, no. 14: 2577. https://doi.org/10.3390/ijerph16142577
APA StylePoderoso, R., Cirilo-Sousa, M., Júnior, A., Novaes, J., Vianna, J., Dias, M., Leitão, L., Reis, V., Neto, N., & Vilaça-Alves, J. (2019). Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit®. International Journal of Environmental Research and Public Health, 16(14), 2577. https://doi.org/10.3390/ijerph16142577