Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Apparatus and Method
2.3. Samples Analysis
2.4. Phosphorous Absorption
2.5. Analysis of Adsorbed Forms of Phosphorus
3. Results and Discussion
3.1. COD and Nitrogen Removal in DNBF
3.1.1. COD Removal
3.1.2. Nitrogen Removal
3.1.3. Microbial Community Associated with COD and N Removal in DNBF
3.2. Phosphorus Removal and the Adsorbed Forms of Phosphorus in DNBF
3.2.1. Phosphorous Absorption Efficiency of Waterworks Sludge Ceramsite
3.2.2. Adsorbed Forms of P by Waterworks Sludge Ceramsite
3.2.3. Phosphorus Removal in DNBF
3.3. Apparent Removal Mechanism of the ICWSC-DNBF
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fenech, C.; Rock, L.; Nolan, K.; Tobin, J.; Morrissey, A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Res. 2012, 46, 2023–2041. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Z.; Wei, X.; Li, P.; Zhang, H.; Li, M.; Li, B.; Wang, S. Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor. Chem. Eng. Sci. 2015, 135, 559–565. [Google Scholar] [CrossRef]
- Ryu, H.N.H.N.; Kim, D.D.G.C.; Lim, H.H.N.C.; Lee, S.G.C.A. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system. Process Biochem. 2008, 43, 729–735. [Google Scholar] [CrossRef]
- Zhimin, F.; Fenglin, Y.; Feifei, Z.; Yuan, X. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresour. Technol. 2009, 100, 136–141. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Shen, D.; Zhou, X.; Shi, N.; Tian, Y. Microbial diversity and community structure of denitrifying biological filters operated with different carbon sources. SpringerPlus 2016, 5, 1527. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yue, Q.; Qi, Y.; Gao, B.; Han, S.; Yue, M. Preparation of ultra-lightweight sludge ceramics (ULSC) and application for pharmaceutical advanced wastewater treatment in a biological aerobic filter (BAF). Bioresour. Technol. 2011, 102, 2296–2300. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Chen, T.; Tan, J.; Wille, M.-L.; Zhu, D.; Chen, D.; Xi, Y. Synthesis and performance of iron oxide-based porous ceramsite in a biological aerated filter for the simultaneous removal of nitrogen and phosphorus from domestic wastewater. Sep. Purif. Technol. 2016, 167, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Effect of steam activated biochar application to industrially contaminated soils on bioavailability of polycyclic aromatic hydrocarbons and ecotoxicity of soils. Sci. Total. Environ. 2016, 566, 1023–1031. [Google Scholar] [CrossRef]
- Bourgeois, J.; Walsh, M.; Gagnon, G.; Gagnon, G. Treatment of drinking water residuals: Comparing sedimentation and dissolved air flotation performance with optimal cation ratios. Water Res. 2004, 38, 1173–1182. [Google Scholar] [CrossRef]
- Rosana, B.S.; Odete, R.; Jurandyr, P. Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere 2007, 68, 628–636. [Google Scholar] [CrossRef]
- Cui, X.; Li, N.; Chen, G.; Zheng, H.; Li, X. Sludge based micro-electrolysis filler for removing tetracycline from solution. J. Colloid Interface Sci. 2018, 534, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zou, J.; Li, G. Ceramsite obtained from water and wastewater sludge and its characteristics affected by (Fe2O3 + CaO + MgO)/(SiO2 + Al2O3). Water Res. 2009, 43, 2885–2893. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, Y.; Liu, Y.; Li, Q.; Zhou, Z.; Ren, Z. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chem. Eng. J. 2017, 315, 403–414. [Google Scholar] [CrossRef]
- Zhao, Z.; Song, X.; Zhao, Y.; Xiao, Y.; Wang, Y.; Wang, J.; Yan, D. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments. Bioresour. Technol. 2017, 225, 262–271. [Google Scholar] [CrossRef]
- Weissenbacher, N.; Loderer, C.; Lenz, K.; Mahnik, S.N.; Wett, B.; Fuerhacker, M. NOx monitoring of a simultaneous nitrifying-denitrifying (SND) activated sludge plant at different oxidation reduction potentials. Water Res. 2007, 41, 397–405. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhou, S.; Wang, X.; Chen, Y.; Lin, X.; Yan, Y.; Ma, X.; Wu, M.; Han, H. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress. Chem. Eng. J. 2017, 317, 512–521. [Google Scholar] [CrossRef]
- Du, L.; Trinh, X.; Chen, Q.; Wang, C.; Wang, H.; Xia, X.; Zhou, Q.; Xu, D.; Wu, Z. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water. Bioresour. Technol. 2018, 249, 644–651. [Google Scholar] [CrossRef]
- Chakraborty, A.; Picardal, F. Induction of Nitrate-Dependent Fe(II) Oxidation by Fe(II) in Dechloromonas sp Strain UWNR4 and Acidovorax sp Strain 2AN. Appl. Environ. Microb. 2013, 79, 748–752. [Google Scholar] [CrossRef]
- Lemaire, R.; Meyer, R.; Taske, A.; Crocetti, G.R.; Keller, J.; Yuan, Z. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol. 2006, 122, 62–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, Z.; Lu, H.; Oehmen, A.; Guo, J. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. Water Res. 2019, 148, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Xiang, Y.; Chen, R.; Shao, Z.; Gu, L.; Li, L.; He, Q. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway. Bioresour. Technol. 2019, 280, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Su, J.F.; Shi, J.X.; Ma, F. Aerobic denitrification and biomineralization by a novel heterotrophic bacterium, Acinetobacter sp. H36. Mar. Pollut. Bull. 2017, 116, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, J.; Wang, X.; Wang, E.; Li, B.; He, R.; Yuan, H. Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour. Technol. 2015, 182, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Grabovich, M.; Gavrish, E.; Kuever, J.; Lysenko, A.; Podkopaeva, D.; Dubinina, G. Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G-kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G-sinuosa comb. nov. and G-giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S-psychrophila comb. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 1179. [Google Scholar] [CrossRef]
- Fu, G.; Yu, T.; Huangshen, L.; Han, J. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities. Bioresour. Technol. 2018, 250, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Shieh, W.Y.; Lin, Y.-T. Zobellella denitrificans gen. nov., sp. nov. and Zobellella taiwanensis sp. nov., denitrifying bacteria capable of fermentative metabolism. Int. J. Syst. Evol. Microbiol. 2006, 56, 1209–1215. [Google Scholar]
- Zhao, J.; Wang, S.; Zhang, L.; Wang, C.; Zhang, B. Kinetic, Isotherm, and Thermodynamic Studies for Ag(I) Adsorption Using Carboxymethyl Functionalized Poly(glycidyl methacrylate). Polymers 2018, 10, 1090. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Wang, S.; Zhang, L.; Zhang, B. Efficient and Selective Adsorption of Gold Ions from Wastewater with Polyaniline Modified by Trimethyl Phosphate: Adsorption Mechanism and Application. Polymers 2019, 11, 652. [Google Scholar] [CrossRef]
- Babatunde, A.; Zhao, Y. Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. J. Hazard. Mater. 2010, 184, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.-M.; Ni, B.-J.; Sheng, G.-P.; Seviour, T.; Yu, H.-Q. Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. Water Res. 2016, 88, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Li, D.; Yang, X.; Xing, W.; Li, J.; Zhang, Q. Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions. Chemosphere 2017, 168, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-J.; An, X.-L.; Li, S.; Zhang, G.-L.; Zhu, Y.-G. Nitrogen Loss through Anaerobic Ammonium Oxidation Coupled to Iron Reduction from Paddy Soils in a Chronosequence. Environ. Sci. Technol. 2014, 48, 10641–10647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Jin, M.; Zhou, X.; Chen, W.; Lu, D.; Zhang, Y.; Shao, X. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant. Sci. Total. Environ. 2019, 649, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, Y.; Pei, H.; Hou, Q. Biofilm development dynamics and pollutant removal performance of ceramsite made from drinking-water treatment sludge. Water Environ. Res. 2019. [Google Scholar] [CrossRef]
System | OUTs a | Ace b | Chao b | Shannon c | Simpson c | Coverage d |
---|---|---|---|---|---|---|
ICWSC-DNBF | 5662 | 33,456.85 | 19,460.16 | 6.62 | 9.35 × 10−2 | 0.999 |
WSC-DNBF | 4755 | 20,907.98 | 13,873.70 | 5.16 | 1.06 × 10−3 | 0.999 |
MC-DNBF | 4533 | 26,257.87 | 12,990.50 | 5.01 | 1.01 × 10−3 | 0.999 |
qe, Measured (mg/g) | First-Order Model | Second-Order Model | ||||
---|---|---|---|---|---|---|
k1 | qe, Predicted (mg/g) | R2 | k2 | qe, Predicted (mg/g) | R2 | |
6.38 | 0.03 | 6.28 | 0.996 | 0.004 | 6.37 | 0.998 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Jin, M.; Xu, H.; Chen, W.; Zhang, Y.; Yang, M.; Shao, X.; Xu, Z.; Wang, W. Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon. Int. J. Environ. Res. Public Health 2019, 16, 2646. https://doi.org/10.3390/ijerph16152646
Zheng X, Jin M, Xu H, Chen W, Zhang Y, Yang M, Shao X, Xu Z, Wang W. Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon. International Journal of Environmental Research and Public Health. 2019; 16(15):2646. https://doi.org/10.3390/ijerph16152646
Chicago/Turabian StyleZheng, Xiaoying, Mengqi Jin, Hang Xu, Wei Chen, Yuan Zhang, Mengmeng Yang, Xiaoyao Shao, Zhi Xu, and Weihong Wang. 2019. "Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon" International Journal of Environmental Research and Public Health 16, no. 15: 2646. https://doi.org/10.3390/ijerph16152646
APA StyleZheng, X., Jin, M., Xu, H., Chen, W., Zhang, Y., Yang, M., Shao, X., Xu, Z., & Wang, W. (2019). Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon. International Journal of Environmental Research and Public Health, 16(15), 2646. https://doi.org/10.3390/ijerph16152646